Two-Stage Network DEA with Bad Outputs

Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 208)

Abstract

Conventional black-box DEA models allow producer performance to be measured for technologies where undesirable outputs are jointly produced by-products of desirable output production. These models allow for non-radial scaling of desirable outputs, undesirable outputs, and inputs and can account for slacks in the constraints that define the technology. We review some of these black-box performance measures and show how to measure performance in two-stage network models. In these kinds of network models inputs are used to produce intermediate outputs in a first stage and then, those intermediate outputs become inputs to a second stage where final desirable outputs and undesirable outputs are produced. The bias from using a black-box model when a network technology exists is examined as well as the bias from ignoring slacks in the constraints defining the network technology.

Keywords

DEA Two-stage network DEA Network directional inefficiency Network slacks-based inefficiency Bad outputs Black-box directional Russell inefficiency Network directional Russell inefficiency Budget-constrained inefficiency Output loss indicator Slack bias Weakly efficient Strongly efficient 

Notes

Acknowledgement

This research is partially supported by the Grants-in-aid for scientific research, fundamental research (B) 19310098 and (C) 23510165, the Japan Society for the Promotion of Science.

References

  1. Akther, S., Fukuyama, H., & Weber, W. L. (2013). Estimating two-stage network slacks-based inefficiency: An application to Bangladesh banking. Omega: The International Journal of Management Science, 41, 88–96.CrossRefGoogle Scholar
  2. Barnett, W., & Hahm, J.-H. (1994). Financial firm production of monetary services: A generalized symmetric Barnett variable profit function approach. Journal of Business and Economics Statistics, 12, 33–46.Google Scholar
  3. Berger, A. N., & Humphrey, D. B. (1997). Efficiency of financial institutions: International survey and directions for future research. European Journal of Operational Research, 98(2), 175–212.CrossRefGoogle Scholar
  4. Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economics Theory, 70, 407–419.CrossRefGoogle Scholar
  5. Chambers, R. G., Chung, Y., & Färe, R. (1998). Profit, directional distance functions and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98(2), 351–364.CrossRefGoogle Scholar
  6. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.CrossRefGoogle Scholar
  7. Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009a). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196, 1170–1176.CrossRefGoogle Scholar
  8. Chen, Y., Liang, L., & Zhu, J. (2009b). Equivalence in two-stage DEA approaches. European Journal of Operational Research, 193(2), 600–604.CrossRefGoogle Scholar
  9. Chen, Y., Cook, W. D., & Zhu, J. (2010). Deriving the DEA frontier for two-stage processes. European Journal of Operational Research, 202(1), 138–142.CrossRefGoogle Scholar
  10. Chen, Y., & Zhu, J. (2004). Measuring information technology’s indirect impact on firm performance. Information Technology & Management Journal, 5(1–2), 9–22.Google Scholar
  11. Färe, R., & Grosskopf, S. (1996). Productivity and intermediate products: A frontier approach. Economics Letters, 50, 65–70.CrossRefGoogle Scholar
  12. Färe, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34, 35–49.CrossRefGoogle Scholar
  13. Färe, R., & Primont, D. (1995). Multi-output production and duality: Theory and applications. Norwell: Kluwer Academic.CrossRefGoogle Scholar
  14. Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1994). Multilateral productivity comparisons when some outputs are undesirable: A non-parametric approach. Review of Economics and Statistics, 71(1), 90–98.CrossRefGoogle Scholar
  15. Färe, R., Grosskopf, S., Noh, D.-W., & Weber, W. (2005). Characteristics of a polluting technology: Theory and practice. Journal of Econometrics, 126, 469–492.CrossRefGoogle Scholar
  16. Färe, R., Grosskopf, S., Margaritis, D., & Weber, W. L. (2012). Technological change and timing reductions in greenhouse gas emissions. Journal of Productivity Analysis, 37, 205–216.CrossRefGoogle Scholar
  17. Fukuyama, H., & Matousek, R. (2011). Efficiency of Turkish banking: Two-stage system variable returns to scale model. Journal of International Financial Markets, Institutions & Money, 21(1), 75–91.CrossRefGoogle Scholar
  18. Fukuyama, H., & Mirdehghan, S. M. (2012). Identifying the efficiency status in network DEA. European Journal of Operational Research, 220(1), 85–92.CrossRefGoogle Scholar
  19. Fukuyama, H., & Weber, W. L. (2008a). Japanese banking inefficiency and shadow pricing. Mathematical and Computer Modelling, 71(11/12), 1854–1867.CrossRefGoogle Scholar
  20. Fukuyama, H., & Weber, W. L. (2008b). Estimating inefficiency, technological change and shadow prices of problem loans for regional banks and Shinkin Banks in Japan. The Open Management Journal, 1, 1–11.CrossRefGoogle Scholar
  21. Fukuyama, H., & Weber, W. L. (2009a). A directional slacks-based measure of technical inefficiency. Socio-Economic Planning Sciences, 43(4), 274–287.CrossRefGoogle Scholar
  22. Fukuyama, H., & Weber, W. L. (2009b). Estimating indirect allocative inefficiency and productivity change. Journal of the Operational Research Society, 60(11), 1594–1608.CrossRefGoogle Scholar
  23. Fukuyama, H., & Weber, W. L. (2010). A slacks-based inefficiency measure for a two-stage system with bad outputs. Omega: International Journal of Management Science, 38, 398–409.CrossRefGoogle Scholar
  24. Fukuyama, H., & Weber, W. L. (2012). Estimating two-stage technology inefficiency. International Journal of Operations Research and Information Systems, 3(2), 1–23.CrossRefGoogle Scholar
  25. Fukuyama, H., & Weber, W. L. (2013, in press). Network performance of Japanese credit cooperatives, 2004–2007. International Journal of Information Technology & Decision Making.Google Scholar
  26. Fukuyama, H., Guerra, R., & Weber, W. L. (1999). Efficiency and ownership: Evidence from Japanese credit cooperatives. Journal of Economics and Business, 51(6), 473–487.CrossRefGoogle Scholar
  27. Grosskopf, S., Hayes, K., Taylor, L., & Weber, W. L. (1997). Budget constrained frontier measures of fiscal equality and efficiency in schooling. Review of Economics and Statistics, 79, 116–124.CrossRefGoogle Scholar
  28. Hancock, D. (1985). The financial firm: Production with monetary and nonmonetary goods. Journal of Political Economy, 93, 859–880.CrossRefGoogle Scholar
  29. Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418–429.CrossRefGoogle Scholar
  30. Luenberger, D. G. (1992). Benefit functions and duality. Journal of Mathematical Economics, 21, 461–481.CrossRefGoogle Scholar
  31. Luenberger, D. G. (1995). Microeconomic theory. New York: McGraw-Hill.Google Scholar
  32. Murty, S., Russell, R. R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management, 64(1), 117–135.CrossRefGoogle Scholar
  33. Pastor, J. T., Ruiz, J. L., & Sirvent, I. (1999). An enhanced Russell graph efficiency measure. European Journal of Operational Research, 115, 596–607.CrossRefGoogle Scholar
  34. Sealey, C., & Lindley, J. (1977). Inputs, outputs, and a theory of production and cost at depository financial institutions. Journal of Finance, 32, 1251–1266.CrossRefGoogle Scholar
  35. Seiford, L. M., & Zhu, J. (1999). Profitability and marketability of the top 55 US commercial banks. Management Science, 45(9), 1270–1288.CrossRefGoogle Scholar
  36. Sexton, T. R., & Lewis, H. F. (2003). Two-stage DEA: An application to major league baseball. Journal of Productivity Analysis, 19, 227–249.CrossRefGoogle Scholar
  37. Shephard, R. W. (1953). Cost and production functions. Princeton: Princeton University Press.Google Scholar
  38. Shephard, R. W. (1970). Theory of cost and production functions. Princeton: Princeton University Press.Google Scholar
  39. Shephard, R. W. (1974). Indirect production functions. Meisenheim Am Glan: Verlag Anton Hain.Google Scholar
  40. Shephard, R. W., & Färe, R. (1974). The law of diminishing returns. Zeitschrift für Nationalökonomie, 34, 69–90.Google Scholar
  41. Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130, 498–509.CrossRefGoogle Scholar
  42. Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197, 243–252.CrossRefGoogle Scholar
  43. Wang, C. H., Gopal, R., & Zionts, S. (1997). Use of data envelopment analysis in assessing information technology impact on firm performance. Annals of Operations Research, 3, 191–213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of CommerceFukuoka UniversityFukuokaJapan
  2. 2.Department of Economics and FinanceSoutheast Missouri State UniversityCape GirardeauUSA

Personalised recommendations