Advertisement

A Bird’s Eye View of Energy-Related Electrochemistry

  • Alessandro Lavacchi
  • Hamish Miller
  • Francesco Vizza
Chapter
Part of the Nanostructure Science and Technology book series (NST, volume 170)

Abstract

An electrochemical cell is a device capable of either obtaining electrical energy directly from a chemical reaction or of converting electrical energy into chemical transformations. Electrochemical devices where the conversion of the chemical energy (the free energy of a spontaneous chemical reaction) into electrical energy (e.g., combination of molecular hydrogen and oxygen to form water) occurs in fuel cells and batteries.

Keywords

Fuel Cell Oxygen Reduction Reaction Electrochemical Reaction Hydrogen Evolution Reaction Alkaline Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.W. Atkins, J. De Paula, Physical Chemistry, 9th edn. (W.H. Freeman, New York, 2010), pp. xxi, 1139 pGoogle Scholar
  2. 2.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn (Wiley, New York, 2001), pp. xxi, 833 pGoogle Scholar
  3. 3.
    C.A. Lucas, N.M. Markovic, B.N. Grgur, P.N. Ross, Structural effects during CO adsorption on Pt-bimetallic surfaces I. The Pt(100) electrode. Surf Sci 448, 65 (2000)Google Scholar
  4. 4.
    C.A. Lucas, N.M. Markovic, P.N. Ross, Structural effects during CO adsorption on Pt-bimetallic surfaces II. The Pt(111) electrode. Surf. Sci. 448, 77 (2000)Google Scholar
  5. 5.
    C.A. Lucas, N.M. Markovic, P.N. Ross, Structural effects induced by CO adsorption on Pt-bimetallic surfaces. Surf. Rev. Lett. 6, 917 (1999)Google Scholar
  6. 6.
    M. Hachkar, T. Napporn, J.M. Leger, B. Beden, C. Lamy, An electrochemical quartz crystal microbalance investigation of the adsorption and oxidation of CO on a platinum electrode. Electrochim. Acta 41, 2721 (1996)CrossRefGoogle Scholar
  7. 7.
    Z.X. Liang, T.S. Zhao, J.B. Xu, L D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54, 2203 (2009)Google Scholar
  8. 8.
    M. Bevilacqua et al., Improvement in the efficiency of an OrganoMetallic Fuel Cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support. Energy Environ. Sci. 5, 8608 (2012)Google Scholar
  9. 9.
    J.O.M. Bockris, A.K.N. Reddy, M.E. Gamboa-Aldeco, Modern Electrochemistry, 2nd edn. (Plenum Press, New York, 1998)Google Scholar
  10. 10.
    A.B. Laursen et al., Electrochemical hydrogen evolution: Sabatier’s principle and the Volcano plot. J. Chem. Educ. 89, 1595 (2012)Google Scholar
  11. 11.
    C.W. Xu, P.K. Shen, Y.L. Liu, Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J. Power Sour. 164, 527 (2007)Google Scholar
  12. 12.
    J.A. Jaksic et al., Spillover of primary oxides as a dynamic catalytic effect of interactive hypo-d-oxide supports. Electrochim. Acta 53, 349 (2007)Google Scholar
  13. 13.
    J. M. Jaksic, D. Labou, G. D. Papakonstantinou, phenomena and significance of intermediate spillover in electrocatalysis of oxygen and hydrogen electrode reactions. Chem. Ind. 66, 425 (2012)Google Scholar
  14. 14.
    S. Treimer, A. Tang, D.C. Johnson, A consideration of the application of Koutecky-Levich plots in the diagnoses of charge-transfer mechanisms at rotated disk electrodes. Electroanalytical 14, 165 (2002)Google Scholar
  15. 15.
    F.J. Vidal-Iglesias, J. Solla-Gullon, V. Montiel, A. Aldaz, Errors in the use of the Koutecky-Levich plots. Electrochem. Commun. 15, 42 (2012)Google Scholar
  16. 16.
    W.C. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529 (2010)CrossRefGoogle Scholar
  17. 17.
    B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571 (2002)CrossRefGoogle Scholar
  18. 18.
    A. Damjanovic, in Modern Aspects of Electrochmistry, vol. 5, ed. by B.E. Conway, J.O’M. Bockris (Plenum, New York, 1965)Google Scholar
  19. 19.
    E. Guerrini, S. Trasatti, Electrocatalysis in water electrolysis ed. by C. Bianchini, P. Barbaro. Catalysis for Sustainable Energy Production (John Wiley and Sons, 2009), p. 235 (2009)Google Scholar
  20. 20.
    J.M. Leger, Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts. J. Appl. Electrochem. 31, 767 (2001)CrossRefGoogle Scholar
  21. 21.
    H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, Methanol electrooxidation on well-characterized Pt-Rn alloys. J. Phys. Chem.-Us 97, 12020 (1993)Google Scholar
  22. 22.
    C. Lamy et al., Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105, 283 (2002)CrossRefGoogle Scholar
  23. 23.
    X. Fang, L.Q. Wang, P.K. Shen, G.F. Cui, C. Bianchini, An in situ fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J. Power Sources 195, 1375 (2010)Google Scholar
  24. 24.
    A. Marchionni et al., Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. Chemsuschem 6, 518 (2013)CrossRefGoogle Scholar
  25. 25.
    V. Bambagioni et al., Ethylene glycol electrooxidation on smooth and nanostructured pd electrodes in alkaline media. Fuel Cells 10, 582 (2010)CrossRefGoogle Scholar
  26. 26.
    V. Bambagioni et al., Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. Chemsuschem 2, 99 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Kwon, K.J.P. Schouten, M.T.M. Koper, Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. Chem. Cat. Chem. 3, 1176 (2011)Google Scholar
  28. 28.
    C. Bianchini, P.K. Shen, Palladium-Based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183 (2009)Google Scholar
  29. 29.
    P.A. Christensen, A. Hamnett, The oxidation of ethylene glycol at a platinum electrode in acid and base: an in situ FTIR study. J. Electroanal. Chem. Interfacial Electrochem. 260, 347 (1989)CrossRefGoogle Scholar
  30. 30.
    F. Hahn, B. Beden, F. Kadirgan, C. Lamy, Electrocatalytic oxidation of ethylene glycol: Part III. In-situ infrared reflectance spectroscopic study of the strongly bound species resulting from its chemisorption at a platinum electrode in aqueous medium. J. Electroanal. Chem. Interfacial Electrochem. 216, 169 (1987)CrossRefGoogle Scholar
  31. 31.
    X. Yu, P.G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 182, 124 (2008)CrossRefGoogle Scholar
  32. 32.
    J.M. Feliu, E. Herrero, Handb. Fuel Cells 2, 679 (2003)Google Scholar
  33. 33.
    A.M. Bartrom, J.L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane. J. Power Sources 214, 68 (2012)CrossRefGoogle Scholar
  34. 34.
    A. Voss, The future-role of nuclear and renewable forms of energy. Brennst-Warme-Kraft 42, 579 (1990)Google Scholar
  35. 35.
    C. Willis, A.W. Boyd, Excitation in the radiation chemistry of inorganic gases. Int. J. Radiat. Phys. Chem. 8, 71 (1976)CrossRefGoogle Scholar
  36. 36.
    E.L. Quinn, C.L. Jones, Carbon Dioxide. American Chemical Society Monograph series (Reinhold Publishing Corporation, New York, 1936), pp. 294, 6 p. incl. illus., tables, diagrsGoogle Scholar
  37. 37.
    C.E. Bamberger, P.R. Robinson, Thermochemical splitting of water and carbon dioxide with cerium compounds. Inorg. Chim. Acta 42, 133 (1980)CrossRefGoogle Scholar
  38. 38.
    J.M. Lehn, R. Ziessel, Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc. Natl. Acad Sci. USA 79, 701 (1982)Google Scholar
  39. 39.
    D. Mandler, I. Willner, Photochemical fixation of carbon dioxide: enzymic photosynthesis of malic, aspartic, isocitric, and formic acids in artificial media. J. Chem. Soc. Perkin Trans. 2 0, 997 (1988)Google Scholar
  40. 40.
    I. Taniguchi, B. Aurian-Blajeni, J.O.M. Bockris, The reduction of carbon dioxide at illuminated p-type semiconductor electrodes in nonaqueous media. Electrochim. Acta 29, 923 (1984)CrossRefGoogle Scholar
  41. 41.
    B.A. Parkinson, P.F. Weaver, Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309, 148 (1984)CrossRefGoogle Scholar
  42. 42.
    T.J. Wan, S.M. Shen, A. Bandyopadhyay, C.M. Shu, Bibliometric analysis of carbon dioxide reduction research trends during 1999–2009. Sep. Purif. Technol. 94, 87 (2012)Google Scholar
  43. 43.
    M.A. Scibioh, B. Viswanathan., Electrochemical reduction of carbon dioxide: a status report. Proc. Indian Natn. Sci. Acad 70, 65 (2004)Google Scholar
  44. 44.
    M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1 (2006)Google Scholar
  45. 45.
    J.A. Dean, N.A. Lange, Handbook of Chemistry (McGraw-Hill, New York, 1973), p. vGoogle Scholar
  46. 46.
    M. Watanabe, M. Shibata, A. Katoh, H. Uchida, M. Tomkiewietz, H. Yoneyami, Y. Hori, R. Haynes, Eds. (1993)Google Scholar
  47. 47.
    J.W. Li, G. Prentice, Electrochemical synthesis of methanol from CO2 in high-pressure electrolyte. J. Electrochem. Soc. 144, 4284 (1997)Google Scholar
  48. 48.
    R.L. Cook, R.C. MacDuff, A.F. Sammells, Electrochemical reduction of carbon dioxide to methane at high current densities. J. Electrochem. Soc. 134, 1873 (1987)CrossRefGoogle Scholar
  49. 49.
    S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of CO2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energ. Fuel 20, 409 (2006)Google Scholar
  50. 50.
    K. Hara, A. Kudo, T. Sakata, M. Watanabe, High-Efficiency electrochemical reduction of carbon-dioxide under high-pressure on a gas-diffusion electrode containing Pt catalysts. J. Electrochem. Soc. 142, L57 (1995)Google Scholar
  51. 51.
    K. Hara, A. Kudo, T. Sakata, Electrochemical reduction of carbon-dioxide under high-pressure on various electrodes in an aqueous-electrolyte. J. Electroanal. Chem. 391, 141 (1995)Google Scholar
  52. 52.
    N. Furuya, T. Yamazaki, M. Shibata, High performance Ru-Pd catalysts for CO2 reduction at gas-diffusion electrodes. J. Electroanal. Chem. 431, 39 (1997)Google Scholar
  53. 53.
    J. Lee, Y. Kwon, R.L. Machunda, H.J. Lee, Electrocatalytic recycling of CO2 and small organic molecules. Chem-Asian J 4, 1516 (2009)CrossRefGoogle Scholar
  54. 54.
    T.Yamamoto, D.A. Tryk, A. Fujishima, H. Ohata, Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell. Electrochim. Acta 47, 3327 (2002)Google Scholar
  55. 55.
    C.M. Sanchez–Sanchez, V. Montiel, D.A. Tryk, A. Aldaz, A. Fujishima, Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation. Pure Appl. Chem. 73, 1917 (2001)Google Scholar
  56. 56.
    D.A. Tryk et al., Recent developments in electrochemical and photoelectrochemical CO2 reduction: involvement of the (CO2)(2)(.-) dimer radical anion. Appl. Organomet. Chem. 15, 113 (2001)Google Scholar
  57. 57.
    T. Yamamoto, D.A. Tryk, K. Hashimoto, A. Fujishima, M. Okawa, Electrochemical reduction of CO2 in the micropores of activated carbon fibers. J. Electrochem. Soc. 147, 3393 (2000)Google Scholar
  58. 58.
    Y. Hori et al., “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim. Acta 50, 5354 (2005)Google Scholar
  59. 59.
    S. Komatsu, M. Tanaka, A. Okumura, A. Kungi, Preparation of Cu-solid polymer electrolyte composite electrodes and application to gas-phase electrochemical reduction of Co2. Electrochim. Acta 40, 745 (1995)Google Scholar
  60. 60.
    C. Delacourt, P.L. Ridgway, J.B. Kerr, J. Newman, Design of an electrochemical cell making syngas (CO + H-2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42 (2008)CrossRefGoogle Scholar
  61. 61.
    D. Dewulf, A. Bard, The electrochemical reduction of CO2 to CH4 and C2H4 at Cu/Nafion electrodes (solid polymer electrolyte structures). Catal. Lett. 1, 73 (1988)Google Scholar
  62. 62.
    R.L. Cook, R.C. Macduff, A.F. Sammells, High-rate gas-phase Co2 reduction to ethylene and methane using gas-diffusion electrodes. J. Electrochem. Soc. 137, 607 (1990)Google Scholar
  63. 63.
    R.L. Cook, R.C. Macduff, A.F. Sammells, Gas-phase Co2 reduction to hydrocarbons at metal solid polymer electrolyte interface. J. Electrochem. Soc. 137, 187 (1990)Google Scholar
  64. 64.
    M. Shibata, N. Furuya, Electrochemical synthesis of urea at gas-diffusion electrodes Part VI. Simultaneous reduction of carbon dioxide and nitrite ions with various metallophthalocyanine catalysts. J. Electroanal. Chem. 507, 177 (2001)Google Scholar
  65. 65.
    M. Shibata, N. Furuya, Simultaneous reduction of carbon dioxide and nitrate ions at gas-diffusion electrodes with various metallophthalocyanine catalysts. Electrochim. Acta 48, 3953 (2003)Google Scholar
  66. 66.
    Y. Hori, A. Murata, S.-Y. Ito, Y. Yoshinami, O. Koga, Nickel and Iron Modified Copper Electrode for Electroreduction of CO2 by In-situ Electrodeposition. Chem. Lett. 18, 1567 (1989)CrossRefGoogle Scholar
  67. 67.
    Y. Hori, H. Ito, K. Okano, K. Nagasu, S. Sato, Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim. Acta 48, 2651 (2003)Google Scholar
  68. 68.
    S. Ikeda, T. Ito, K. Azuma, K. Ito, H. Noda, Electrochemical mass reduction of carbon-dioxide using Cu-loaded gas-diffusion electrodes .1. Preparation of electrode and reduction products. Denki Kagaku 63, 303 (1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alessandro Lavacchi
    • 1
  • Hamish Miller
    • 1
  • Francesco Vizza
    • 1
  1. 1.ICCOM-CNRSesto FiorentinoItaly

Personalised recommendations