Hypoxia pp 55-62 | Cite as

Epigenetics in Cardiovascular Regulation

  • Claudio Sartori
  • Stefano F. Rimoldi
  • Emrush Rexhaj
  • Yves Allemann
  • Urs Scherrer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 903)


Epidemiological studies have shown an association between pathologic events occurring during early life and the development of cardiovascular and metabolic disease in adulthood. These observations have led to the so-called fetal programming of adult disease hypothesis. In line with this hypothesis, short-term exposure to hypoxia after birth predisposes to exaggerated hypoxic pulmonary vasoconstriction later in life in rats, and transient perinatal hypoxia predisposes to exaggerated pulmonary hypertension during short-term exposure to high altitude in humans. Along the same lines, in recent studies in Bolivian high-altitude dwellers, we found that preeclampsia predisposes the offspring to pulmonary and systemic endothelial dysfunction possibly related to impaired NO bioavailability and augmented oxidative stress. Very recent data from our lab suggest that assisted reproductive technologies may represent another important example consistent with this hypothesis. The mechanisms underpinning the developmental origin of this vascular dysfunction are poorly understood. Increasing evidence suggests that epigenetic alterations, such as DNA methylation or histone acetylation may play a role.


Epigenetic Pulmonary hypertension Endothelial function Preeclampsia Hypoxia 


  1. 1.
    Barker DJ. Fetal origins of cardiovascular disease. Ann Med. 1999;31 Suppl 1:3–6.PubMedGoogle Scholar
  2. 2.
    Barker DJ. The fetal and infant origins of disease. Eur J Clin Invest. 1995;25:457–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Berger MM, Hesse C, Dehnert C, Siedler H, Kleinbongard P, Bardenheuer HJ, Kelm M, Bartsch P, Haefeli WE. Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Am J Respir Crit Care Med. 2005;172:763–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the f0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the f1 and f2 generations. Br J Nutr. 2007;97:435–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part i. Circulation. 2003;108:1527–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Franco MC, Akamine EH, Reboucas N, Carvalho MH, Tostes RC, Nigro D, Fortes ZB. Long-term effects of intrauterine malnutrition on vascular function in female offspring: implications of oxidative stress. Life Sci. 2007;80:709–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Friedman AH, Fahey JT. The transition from fetal to neonatal circulation: normal responses and implications for infants with heart disease. Semin Perinatol. 1993;17:106–21.PubMedGoogle Scholar
  8. 8.
    Gemignani V, Bianchini E, Faita F, Giannarelli C, Plantinga Y, Ghiadoni L, Demi M. Ultrasound measurement of the brachial artery flow-mediated dilation without ecg gating. Ultrasound Med Biol. 2008;34:385–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Gluckman PD, Hanson MA, Beedle AS. Non-genomic transgenerational inheritance of disease risk. Bioessays. 2007;29:145–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Godfrey KM. The role of the placenta in fetal programming—a review. Placenta. 2002;23(Suppl A):S20–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Hakim TS, Mortola JP. Pulmonary vascular resistance in adult rats exposed to hypoxia in the neonatal period. Can J Physiol Pharmacol. 1990;68:419–24.CrossRefPubMedGoogle Scholar
  12. 12.
    Hampl V, Herget J. Perinatal hypoxia increases hypoxic pulmonary vasoconstriction in adults rats recovering from chronic exposure to hypoxia. Am Rev Respir Dis. 1990;142:619–24.CrossRefPubMedGoogle Scholar
  13. 13.
    Ingelfinger JR. Pathogenesis of perinatal programming. Curr Opin Nephrol Hypertens. 2004;13:459–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Jarvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, Lehtimaki T, Ronnemaa T, Viikari J, Raitakari OT. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004;109:1750–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Jayet PY, Rimoldi SF, Stuber T, Salmon CS, Hutter D, Rexhaj E, Thalmann S, Schwab M, Turini P, Sartori-Cucchia C, Nicod P, Villena M, Allemann Y, Scherrer U, Sartori C. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation. 2010;122:488–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40:1176–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Langley-Evans SC. Developmental programming of health and disease. Proc Nutr Soc. 2006;65:97–105.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74:599–609.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rexhaj E, Bloch J, Jayet PY, Rimoldi SF, Dessen P, Mathieu C, Tolsa JF, Nicod P, Scherrer U, Sartori C. Fetal programming of vascular dysfunction in mice: role of epigenetic mechanisms. Am J Physiol Heart Circ Physiol. 2011;301:H247–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U. Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet. 1999;353:2205–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Sartori C, Rimoldi SF, Scherrer U. Lung fluid movements in hypoxia. Prog Cardiovasc Dis. 2010;52:493–9.Google Scholar
  22. 22.
    Scherrer U, Allemann Y, Jayet PY, Rexhaj E, Sartori C. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology. Prog Cardiovasc Dis. 2010;52:451–5.Google Scholar
  23. 23.
    Scherrer U, Sartori C, Lepori M, Allemann Y, Duplain H, Trueb L, Nicod P. High-altitude pulmonary edema: from exaggerated pulmonary hypertension to a defect in transepithelial sodium transport. Adv Exp Med Biol. 1999;474:93–107.CrossRefPubMedGoogle Scholar
  24. 24.
    Seidman DS, Laor A, Gale R, Stevenson DK, Mashiach S, Danon YL. Pre-eclampsia and offspring’s blood pressure, cognitive ability and physical development at 17-years-of-age. Br J Obstet Gynaecol. 1991;98:1009–14.CrossRefPubMedGoogle Scholar
  25. 25.
    Sutcliffe AG, Ludwig M. Outcome of assisted reproduction. Lancet. 2007;370:351–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Szyf M, Weaver IC, Champagne FA, Diorio J, Meaney MJ. Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol. 2005;26:139–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Vatten LJ, Romundstad PR, Holmen TL, Hsieh CC, Trichopoulos D, Stuver SO. Intrauterine exposure to preeclampsia and adolescent blood pressure, body size, and age at menarche in female offspring. Obstet Gynecol. 2003;101:529–33.PubMedGoogle Scholar
  28. 28.
    Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A. 2006;103:3480–5.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weitzman SA, Turk PW, Milkowski DH, Kozlowski K. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A. 1994;91:1261–4.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Whitelaw NC, Whitelaw E. Transgenerational epigenetic inheritance in health and disease. Curr Opin Genet Dev. 2008;18:273–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Ying M, Xu R, Wu X, Zhu H, Zhuang Y, Han M, Xu T. Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for drpla. J Biol Chem. 2006;281:12580–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Claudio Sartori
    • 1
  • Stefano F. Rimoldi
    • 2
  • Emrush Rexhaj
    • 2
  • Yves Allemann
    • 2
  • Urs Scherrer
    • 2
  1. 1.Department of Internal MedicineUniversity HospitalLausanneSwitzerland
  2. 2.Department of Codiology, Swiss Cardiovascular CenterUniversity HospitalBernSwitzerland

Personalised recommendations