Advertisement

Hypoxia pp 301-323 | Cite as

Hypoxia and Its Acid–Base Consequences: From Mountains to Malignancy

  • Erik R. SwensonEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 903)

Abstract

Hypoxia, depending upon its magnitude and circumstances, evokes a spectrum of mild to severe acid–base changes ranging from alkalosis to acidosis, which can alter many responses to hypoxia at both non-genomic and genomic levels, in part via altered hypoxia-inducible factor (HIF) metabolism. Healthy people at high altitude and persons hyperventilating to non-hypoxic stimuli can become alkalotic and alkalemic with arterial pH acutely rising as high as 7.7. Hypoxia-mediated respiratory alkalosis reduces sympathetic tone, blunts hypoxic pulmonary vasoconstriction and hypoxic cerebral vasodilation, and increases hemoglobin oxygen affinity. These effects and others can be salutary or counterproductive to tissue oxygen delivery and utilization, based upon magnitude of each effect and summation. With severe hypoxia either in the setting of profound arterial hemoglobin desaturation and reduced O2 content or poor perfusion (ischemia) at the global or local level, metabolic and hypercapnic acidosis develop along with considerable lactate formation and pH falling to below 6.8. Although conventionally considered to be injurious and deleterious to cell function and survival, both acidoses may be cytoprotective by various anti-inflammatory, antioxidant, and anti-apoptotic mechanisms which limit total hypoxic or ischemic–reperfusion injury. Attempts to correct acidosis by giving bicarbonate or other alkaline agents under these circumstances ahead of or concurrent with reoxygenation efforts may be ill advised. Better understanding of this so-called “pH paradox” or permissive acidosis may offer therapeutic possibilities. Rapidly growing cancers often outstrip their vascular supply compromising both oxygen and nutrient delivery and metabolic waste disposal, thus limiting their growth and metastatic potential. However, their excessive glycolysis and lactate formation may not necessarily represent oxygen insufficiency, but rather the Warburg effect—an attempt to provide a large amount of small carbon intermediates to supply the many synthetic pathways of proliferative cell growth. In either case, there is expression and upregulation of many genes involved in acid–base homeostasis, in part by HIF-1 signaling. These include a unique isoform of carbonic anhydrase (CA-IX) and numerous membrane acid–base transporters engaged to maintain an optimal intracellular and extracellular pH for maximal growth. Inhibition of these proteins or gene suppression may have important therapeutic application in cancer chemotherapy.

Keywords

Hypoxia HIF pH regulation Alkalosis Acidosis Exercise Cancer Shock Ischemia Altitude Lactate Carbonic anhydrase 

References

  1. 1.
    Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRefGoogle Scholar
  2. 2.
    Allen DB, Maguire JJ, Mahdavian M, Wicke C, Marcocci L, Scheuenstuhl H. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg. 1997;132:991–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Ahlskog JKJ, Dumelin CE, Truessel S, Marlind J, Neri D. In vivo targeting of tumor-associated carbonic anhydrases using acetazolamide derivatives. Bioorg Med Chem Lett. 2009;19:4851–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Avkiran M. Rational basis for use of sodium-hydrogen exchange inhibitors in myocardial ischemia. Am J Cardiol. 1999;83:10G–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94:1543–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Battke C, Kremmer E, Mysliwietz J, Gondi G, Dumitru C, Brandau S, et al. Generation and characterization of the first inhibitory antibody targeting tumour-associated carbonic anhydrase XII. Cancer Immunol Immunother. 2011;60:649.PubMedCrossRefGoogle Scholar
  7. 7.
    Bauer S, Oosterwijk-Wakka JC, Adrian N, Oosterwijk E, Fischer E, Wüest T, et al. Targeted therapy of renal cell carcinoma: synergistic activity of cG250-TNF and IFNg. Int J Cancer. 2009;125:115–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Becker HM, Klier M, Deitmer JW. Nonenzymatic augmentation of lactate transport via mono-carboxylate transporter isoform 4 by carbonic anhydrase II. J Membr Biol. 2010;234:125–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Beecher HK, Murphy AJ. Acidosis during thoracic surgery. J Thorac Surg. 1950;19:50–70.PubMedGoogle Scholar
  10. 10.
    Berger DS, Fellner SK, Robinson KA, Vlasica K, Godoy IE, Shroff SG. Disparate effects of three types of acidosis on left ventricular function. Am J Physiol. 1999;276:H582–94.PubMedGoogle Scholar
  11. 11.
    Bidani A, Heming T. Effects of bafilomycin A1 on functional capabilities of LPS-activated alveolar macrophages. J Leukoc Biol. 1995;57:275–81.PubMedGoogle Scholar
  12. 12.
    Bond JM, Herman B, Lemasters JJ. Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes. Biochem Biophys Res Commun. 1991;179:798–803.PubMedCrossRefGoogle Scholar
  13. 13.
    Boron WF. Regulation of intracellular pH. Adv Physiol Educ. 2004;28:160–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Boron WF. Gas channels. Exp Physiol. 2010;95:1107–30.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Brahimi-Horn MC, Bellot G, Pouyssegur J. Hypoxia and energetic tumor metabolism. Curr Opin Genet Dev. 2011;21:67.PubMedCrossRefGoogle Scholar
  16. 16.
    Brogan TV, Robertson HT, Lamm WJ, Souders JE, Swenson ER. Carbon dioxide added late in inspiration reduces ventilation-perfusion heterogeneity without causing respiratory acidosis. J Appl Physiol. 2004;96:1894–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol. 2009;587:5591–600.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Burnier M, Van Putten VJ, Schieppatti A, Schier RW. Effect of extracellular acidosis on 45Ca uptake in isolated hypoxic proximal tubules. Am J Physiol. 1988;254:C839–46.PubMedGoogle Scholar
  19. 19.
    Butler PJ. High fliers: the physiology of bar-headed geese. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:325–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 2005;5:786–95.PubMedCrossRefGoogle Scholar
  21. 21.
    Carlin S, Khan N, Ku T, Longo VA, Larson SM, Smith-Jones PM. Molecular targeting of carbonic anhydrase IX in mice with hypoxic HT29 colorectal tumor xenografts. PLoS One. 2010;5:e10857.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chapman RF, Stray-Gundersen J, Levine BD. Epo production at altitude in elite endurance athletes is not associated with the sea level hypoxic ventilatory response. J Sci Med Sport. 2010;13:624–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Chegwidden WR, Spencer IM. Sulphonamide inhibitors of carbonic anhydrase inhibit the growth of human lymphoma cells in culture. Inflammopharmacology. 1995;3:231–9.CrossRefGoogle Scholar
  24. 24.
    Chegwidden WR, Spencer IM. Sulphonamide inhibitors of carbonic anhydrase inhibit the growth of human lymphoma cells in culture. Immunopharmacology. 1996;3:231–9.Google Scholar
  25. 25.
    Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by countering acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69:358–68.PubMedCrossRefGoogle Scholar
  26. 26.
    Chopra A (2010) 111In-labeled monovalent Fab fragment of chimeric monoclonal antibody cG250 directed against carbonic anhydrase IX. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda, MD: National Center for Biotechnology Information (US); 2004–2010Google Scholar
  27. 27.
    Cianchi F, Vinci MC, Supuran CT, Peruzzi B, De Giuli P, Fasolis G. Selective inhibition of carbonic anhydrase IX decreases cell proliferation and induces ceramide-mediated apoptosis in human cancer cells. J Pharmacol Exp Ther. 2010;334:710–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Clerici C, Planes C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am J Physiol. 2009;296:L267–74.Google Scholar
  29. 29.
    Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning; staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 2007;115:1895–903.PubMedCrossRefGoogle Scholar
  30. 30.
    Collier DM, Synder PM. Extracellular protons regulate human ENaC by modulating Na + self inhibition. J Biol Chem. 2009;284:792–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cooper DJ, Walley KR, Wiggs BR, Russell JA. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med. 1990;112:492–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Currin RT, Gores GJ, Thurman RG, Lemasters JJ. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB J. 1991;5:207–10.PubMedGoogle Scholar
  33. 33.
    Darioli R, Perret C. Mechanically controlled hypoventilation in status asthmaticus. Am Rev Respir Dis. 1984;129:385–7.PubMedGoogle Scholar
  34. 34.
    Das A, Banik NL, Ray SK. Modulatory effects of acetazolamide and dexamethasone on temozolimide mediated apoptosis in human gliobastoma T98G and U87MG cells. Cancer Invest. 2008;26:352–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Dawson CA. Role of pulmonary vasomotion in physiology of the lung. Physiol Rev. 1984;64:544–616.PubMedGoogle Scholar
  36. 36.
    De Simone G, Supuran CT. Carbonic anhydrase IX: biochemical and crystallographic characterization of a novel antitumor target. Biochim Biophys Acta. 2010;1804:404–9.PubMedCrossRefGoogle Scholar
  37. 37.
    DiBona G, Koop U. Neural control of renal function. Physiol Rev. 1997;77:75–197.PubMedGoogle Scholar
  38. 38.
    Dorai T, Sawczuk I, Pastorek J, Wiernik PH, Dutcher JP. Role of carbonic anhydrases in the progression of renal cell carcinoma subtypes: proposal of a unified hypothesis. Cancer Invest. 2006;24:1–26.CrossRefGoogle Scholar
  39. 39.
    Dorrington KL, Balanos GM, Talbot NP, Robbins PA. Extent to which pulmonary vascular responses to PCO2 and PO2 play a functional role within the healthy human lung. J Appl Physiol. 2010;108:1084–96.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Duplain H, Vollenweider L, Delabays A, Nicod P, Bärtsch P, Scherrer U. Augmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema. Circulation. 1999;99:1713–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Durkot MJ, De Garavilla L, Caretti D, Francesconi R. The effects of dichloroacetate on lactate accumulation and endurance in an exercising rat model. Int J Sports Med. 1995;16:167–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Eckardt KU, Kurtz A, Bauer C. Triggering of erythropoietin production by hypoxia is inhibited by respiratory and metabolic acidosis. Am J Physiol. 1990;258:R678–83.PubMedGoogle Scholar
  43. 43.
    Effros RM, Swenson ER. Acid-base balance. In: Mason RJ, Broadddus VC, Martin TR, Schraufnagel DE, Murray JF, Nadel JA, editors. Textbook of respiratory medicine. Philadelphia, PA: Saunders Elsevier; 2010. p. 134–58.Google Scholar
  44. 44.
    Fan JL, Burgess KR, Basnyat R, Thomas KN, Peebles KC, Lucas SJ, Lucas RA, Donnelly J, Cotter JD, Ainslie PN. Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Physiol. 2010;588:539–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Flacke JP, Kumar S, Kostlin S, Reusch HP, Ladilov Y. Acidic preconditioning protects endothelial cells against apoptosis by p38- and Akt-dependent BcL-xL overexpression. Apoptosis. 2009;14:90–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Frans A, Clerbaux T, Willems E, Kreuzer F. Effect of metabolic acidosis on pulmonary gas exchange of artificially ventilated dogs. J Appl Physiol. 1993;74(5):2301–8.PubMedGoogle Scholar
  47. 47.
    Gazmuri RJ, Ayoub IM, Kolarova JD, Kamazyn M. Myocardial protection during ventricular fibrillation by inhibition of the sodium-hydrogen exchanger isoform-1. Crit Care Med. 2002;30:S166–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Gil S, Zaderenzo P, Cruz F, Cerdan S, Ballesteros P. Imidazol-1-ylalkanoic acids as extrinsic 1H -NMR probes for the determination of intracellular pH, extracellular pH and cell volume. Bioorg Med Chem. 1994;2:305–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Gillies RJ, Liu Z, Bhujwalla Z. 31P-NMR measurements of extracellular pH of tumors using 3-amino-propylphosphonate. Am J Physiol. 1994;267:C195–203.PubMedGoogle Scholar
  50. 50.
    Gilmartin G, Tamisier R, Anand A, Cunningotn D, Weiss JW. Evidence of impaired hypoxic vasodilation after intermediate-duration hypoxic exposure in humans. Am J Physiol. 2006;291:H2173–80.Google Scholar
  51. 51.
    Gores GJ, Niemann AL, Wray BE, Herman B, LeMasters JJ. Intracellular pH during chemical hypoxia in cultured rat hepatocytes: protection by intracellular acidosis against the onset of death. J Clin Invest. 1989;83:386–96.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Graf H, Leach W, Arieff AI. Metabolic effects of sodium bicarbonate in hypoxic lactic acidosis in dogs. Am J Physiol. 1985;249:F630–5.PubMedGoogle Scholar
  53. 53.
    Griffiths JR, Stevens AN, Iles RA, Gordon RE, Shaw D. 31P-NMR investigation of solid tumors in the living rat. Biosci Rep. 1981;1:319–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Grocott MP, Martin DS, Levitt DZ, McMorrow R, Windsor J, Montgomery HE, et al. Arterial blood gases and oxygen content in climbers on Mt Everest. N Engl J Med. 2009;360:140–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Gros G, Moll W, Hoppe H, Gros H. Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer. J Gen Physiol. 1976;67:773–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Gullino PM, Grantham FH, Smith SH, Haggerty AC. Modifications of the acid-base status of the internal milieu of tumors. J Natl Cancer Inst. 1965;34:857–69.PubMedGoogle Scholar
  57. 57.
    Hallerdei J, Scheibe RJ, Parkkila S, Waheed A, Sly WS, et al. T tubules and surface membranes provide equally effective pathways of carbonic anhydrase-facilitated lactic acid transport in skeletal muscle. PLoS One. 2010;5:e15137.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hebbel RP, Eaton JW, Kronenberg RS, Moore LG, Berger EM. Human llamas: adaptation to altitude in subjects with high hemoglobin oxygen affinity. J Clin Invest. 1978;62:593–600.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Helperin FA, Cheema-Dhadi S, Bun-Chen CB, Helperin ML. Alkali therapy extends the period of survival during hypoxia: studies in rats. Am J Physiol. 1996;271:R381–7.Google Scholar
  60. 60.
    Higashida T, Peng C, Li J, Dornbos D, Teng K, Li X, et al. Hypoxia-inducible factor-1alpha contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr Neurovasc Res. 2011;8:44–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Hohenhaus E, Paul A, McCullough RE, Kücherer H, Bärtsch P. Ventilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema. Eur Respir J. 1995;8:1825–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Hood VL, Tannen RL. Protection of acid-base balance by pH regulation of acid production. N Engl J Med. 1998;339:819–26.PubMedCrossRefGoogle Scholar
  63. 63.
    Hornbein TF, Townes BD, Schoene RB, Sutton JR, Houston CS. The cost to the central nervous system of climbing to extremely high altitude. N Engl J Med. 1989;321:1714171.CrossRefGoogle Scholar
  64. 64.
    Hulikova A, Zatovicova M, Svastova E, Ditte P, Brasseur R, Kettmann R, et al. Intact intracellular tail is critical for proper functioning of the tumor-associated, hypoxia-regulated carbonic anhydrase IX. FEBS Lett. 2009;583:3563–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Hulter HN, Krapf R. Interrelationships among hypoxia-inducible factor biology and acid-base equilibrium. Semin Nephrol. 2006;26:454–65.PubMedCrossRefGoogle Scholar
  66. 66.
    Ihnatko R, Kubes M, Takacova M, Sedlakova O, Sedlak J, Pastorek J, et al. Extracellular acidosis elevates carbonic anhydrase IX in human glioblastoma cells via transcriptional modulation that does not depend on hypoxia. Int J Oncol. 2006;29:1025–33.PubMedGoogle Scholar
  67. 67.
    Innocenti A, Pastorekova S, Pastorek J, Scozzafava A, De Simone G, Supuran CT. The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as an intrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorg Med Chem Lett. 2009;19:5825–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Inserte J, Barba I, Hernando V, Abellan A, Ruiz-Meana M, Rodriguez-Sinbovas A, Garcia-Dorado D. Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage. Cardiovasc Res. 2008;77:782–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Ivanov S, Liao SY, Ivanov A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, et al. Expression of hypoxia-inducible cell surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001;158:905–19.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol. 2004;286:E245–51.Google Scholar
  72. 72.
    Kallinowski F, Schlenger KH, Runkel S, Kloes M, Stohrer M, Okunieff P, et al. Blood flow, metabolism, cellular microenvironment and growth rate of human tumor xenografts. Cancer Res. 1989;49:3759–64.PubMedGoogle Scholar
  73. 73.
    Kaluz S, Kaluzova M, Liao SY, Lerman M, Stanbridge EJ. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim Biophys Acta. 2009;1795:162–72.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Klaussen T, Christensen H, Hansen JM, Nielsen OJ, Fogh-Andersen N, Olsen NV. Human erythropoietin response to hypocapnic hypoxia, normocapnic hypoxia and hypocapnic normoxia. Eur J Appl Physiol. 1996;74:475–80.CrossRefGoogle Scholar
  75. 75.
    Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci. 2002;99:821–6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Komori M, Takada K, Tomizawa Y, Nishiyama K, Kawamata M, Ozaki M. Permissive range of hypercapnia for improved peripheral microcirculation and cardiac output in rabbits. Crit Care Med. 2007;35:2171–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Koukourakis MI, Pitiakoudis M, Giatromanolaki A, Tsarouha A, Polychronidis A, Sivridis E, et al. Oxygen and glucose consumption in gastrointestinal adenocarcinomas: correlation with markers of hypoxia, acidity and anaerobic glycolysis. Cancer Sci. 2006;97:1056–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Kregenow DA, Rubenfeld GF, Hudson LD, Swenson ER. Hypercapnia and mortality in acute lung injury. Crit Care Med. 2006;34:1–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Kregenow DA, Swenson ER. Hypercapnic acidosis: implications for permissive and therapeutic hypercapnia. Eur Respir J. 2002;20:6–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Kumar S, Reusch HP, Ladilov YV. Acidic preconditioning suppresses apoptosis and increases expression of Bcl-xL in coronary artery endothelial cells under simulated ischemia. J Cell Mol Med. 2008;12:1584–92.PubMedCrossRefGoogle Scholar
  81. 81.
    Laffey JG, Engelberts D, Kavanagh BP. Injurious effects of hypocapnic alkalosis in the isolated lung. Am J Respir Crit Care Med. 2000;162:399–405.PubMedCrossRefGoogle Scholar
  82. 82.
    Lamb GD, Stephenson DG, Bangsbo J, Juel C. Point:Counterpoint: lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol. 2006;100:1410–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Lardner A. The effects of extracellular pH in immune function. J Leukoc Biol. 2001;69:522–30.PubMedGoogle Scholar
  84. 84.
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na + K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365:871–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Linz WJ, Busch AE. NHE-1 inhibition: from protection during acute ischemia-reperfusion to prevention/reversal of myocardial remodeling. Naunyn Schmiedebergs Arch Pharmacol. 2003;68:239–44.CrossRefGoogle Scholar
  86. 86.
    Litt L, González-Méndez R, Severinghaus JW, Hamilton WK, Shuleshko J, Murphy-Boesch J, James TL. Cerebral intracellular changes during supercarbia: an in vivo 31P nuclear magnetic resonance study in rats. J Cereb Blood Flow Metab. 1985;5:537–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Machida Y, Ueda Y, Shimasaki M, Sato K, Sagawa M, Katsuda S, Sakuma T. Relationship of aquaporin 1,3 and 5 expression in lung cancer cells to cellular differentiation, invasive growth and metastasis potential. Hum Pathol. 2011;42:669.PubMedCrossRefGoogle Scholar
  88. 88.
    Maddock RJ. The lactic acid response to alkalosis in panic disorder: an integrative review. J Neuropsychiatry Clin Neurosci. 2001;13:22–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Maggiorini M, Brunner-La Rocca HP, Peth S, Fischler M, Böhm T, Bernheim A, et al. Both tadalafil and dexamethasone may reduce the incidence of high-altitude pulmonary edema: a randomized trial. Ann Intern Med. 2006;145:497–506.PubMedCrossRefGoogle Scholar
  90. 90.
    Mairbaeurl H, Oelz O, Bartsch P. Interactions between Hb, Mg, DPG, ATP, and Cl determine the change in Hb-O2 affinity at high altitude. J Appl Physiol. 1993;74:40–8.CrossRefGoogle Scholar
  91. 91.
    Marcinek DJ, Kushmerick MJ, Conley KE. Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle. J Appl Physiol. 2010;108:1479–86.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ. Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol. 1993;265:1015–29.Google Scholar
  93. 93.
    Martínez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, Smith D, Dalton WS, Gillies RJ. pH and drug resistance. I. Functional expression of plasmalemmal V-type H + -ATPase in drug resistant human breast carcinoma cell lines. Biochem Pharmacol. 1999;57:1037–46.PubMedCrossRefGoogle Scholar
  94. 94.
    Mathupala SP, Ko YH, Pedersen PL. The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta. 2010;1797:1225–30.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    McKenna MJ, Bangsbo J, Renaud JM. Muscle K+, Na+, and Cl- disturbances and Na + -K+ pump inactivation: implications for fatigue. J Appl Physiol. 2008;104:288–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Mekhail K, Gunaratnam L, Bonicalzi ME, Lee S. HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol. 2004;6:642–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Mullin JM, Gabello M, Murray LJ, Farrell CP, Bellows J, Wolov KR, Kearney KR, Rudolph D, Thornton JJ. Proton pump inhibitors: actions and reactions. Drug Discov Today. 2000;14:647–60.CrossRefGoogle Scholar
  98. 98.
    Myrianthefs PM, Briva A, Lecuona E, Dumasius V, Rutschman DH, Ridge KM, et al. Hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption. Am J Respir Crit Care Med. 2005;171:1267–71.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Narins RG, Cohen JJ. Bicarbonate therapy for organic acidosis: the case for its continued use. Ann Intern Med. 1987;106:615–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Nice B, Ribatti D. Aquaporins in tumor growth and angiogenesis. Cancer Lett. 2010;294:135–8.CrossRefGoogle Scholar
  101. 101.
    Nichol AD, O’Cronin DF, Naughton F, Hopkins N, Boylan J, McLoughlin P. Hypercapnic acidosis reduces oxidative reactions in endotoxin-induced lung injury. Anesthesiology. 2010;113:116–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Nielsen HB. pH after competitive rowing: the lower physiological range. Acta Physiol Scand. 1999;165:113–4.PubMedCrossRefGoogle Scholar
  103. 103.
    O’Croinin DF, Nichol AD, Hopkins N, Boylan J, O’Brien S, O’Connor C, Laffey JG, McLoughlin P. Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury. Crit Care Med. 2008;36:2128–35.PubMedCrossRefGoogle Scholar
  104. 104.
    Okuda Y, Adrogue HJ, Field JB, Nohara H, Yamashita K. Counterproductive effects of bicarbonate in diabetic ketoacidosis. J Clin Endocrinol Metab. 1996;81:314–20.PubMedGoogle Scholar
  105. 105.
    Ogoh S, Nakahara H, Ainslie PN, Miyamoto T. The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia. J Appl Physiol. 2010;108:538–43.PubMedCrossRefGoogle Scholar
  106. 106.
    O’Neill M, Sears CE, Paterson DJ. Interactive effects of K+, acid, norepinephrine, and ischemia on the heart: implications for exercise. J Appl Physiol. 1997;82:1046–52.PubMedGoogle Scholar
  107. 107.
    Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, et al. Post-conditioning and protection from reperfusion injury: where do we stand? Cardiovasc Res. 2010;87:406–23.PubMedCrossRefGoogle Scholar
  108. 108.
    Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show anti-metastatic activity in a model of breast cancer metastasis. J Med Chem. 2011;54:1896.PubMedCrossRefGoogle Scholar
  109. 109.
    Parkkila S, Rajaniemi H, Parkkila AK, Kivela J, Waheed A, Pastorekova S, et al. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vivo. Proc Natl Acad Sci U S A. 2000;97:2220–4.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Parks SK, Chiche J, Pouyssegur J. pH control mechanisms of tumor survival and growth. J Cell Physiol. 2011;226:299–308.PubMedCrossRefGoogle Scholar
  111. 111.
    Pederson TH, De Paoli F, Nielson OB. Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol. 2005;125:237–46.CrossRefGoogle Scholar
  112. 112.
    Peng YJ, Nanduri J, Khan SA, Yuan G, Wang N, Kinsman B, et al. Hypoxia-inducible factor 2α (HIF-2α) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011;108:3065.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Petschow D, Würdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C. Causes of high blood O2 affinity of animals living at high altitude. J Appl Physiol. 1977;42:139–43.PubMedGoogle Scholar
  114. 114.
    Potkin R, Swenson ER. Resuscitation form severe acute hypercarbia: determinants of tolerance and survival. Chest. 1992;102:1742–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Poulsen SA. Carbonic anhydrase inhibition as a cancer therapy; a review of patent literature, 2007-2009. Expert Opin Ther Pat. 2010;20:795–806.PubMedCrossRefGoogle Scholar
  116. 116.
    Powell FL, Kim BC, Johnson SR, Fu Z. Oxygen sensing in the brain--invited article. Adv Exp Med Biol. 2009;648:369–76.PubMedCrossRefGoogle Scholar
  117. 117.
    Quistorff B, Secher NH, Van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22:3443–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Raghunand N, Gillies RJ. pH and chemotherapy. In: Novartis foundation symposium, vol. 240. Chichester: Wiley; 2001. p. 199–231.Google Scholar
  119. 119.
    Refsum HE, Opdahl H, Leraand S. Effect of extreme metabolic acidosis on oxygen delivery capacity of blood- an in vitro investigation of changes in the oxyhemoglobin dissociation curve in blood with pH values of approximately 6.30. Crit Care Med. 1997;25:1497–501.PubMedCrossRefGoogle Scholar
  120. 120.
    Relman AS. Metabolic consequences of acid-base disorders. Kidney Int. 1972;1:347–59.PubMedCrossRefGoogle Scholar
  121. 121.
    Richardson RS, Leigh JS, Wagner PD, Noyszewski EA. Cellular PO2 as a determinant of maximal mitochondrial O2 consumption in trained human skeletal muscle. J Appl Physiol. 1999;87:325–31.PubMedGoogle Scholar
  122. 122.
    Robach P, Déchaux M, Jarrot S, Vaysse J, Schneider JC, Mason NP, et al. Operation Everest III: role of plasma volume expansion on VO2max during prolonged high-altitude exposure. J Appl Physiol. 2000;89:29–37.PubMedGoogle Scholar
  123. 123.
    Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol. 2004;287:R502–16.Google Scholar
  124. 124.
    Robertson N, Potter C, Harris AL. Role of carbonic anhydrase IX in human tumor cell growth, survival and invasion. Cancer Res. 2004;64:6160–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Robey IF, Bagett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 2009;69:2260–7.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Rowell LB. Muscle blood flow in humans: how high can it go? Med Sci Sports Exerc. 1998;20(5 Suppl):S97–103.Google Scholar
  127. 127.
    Schafer C, Ladilov YV, Siegmund B, Piper HM. Importance of bicarbonate transport of protection of cardiomyocytes against reoxygenation injury. Am J Physiol. 2000;278:H1457–63.Google Scholar
  128. 128.
    Semenza GL. Defining the role of hypoxia-inducible factor-1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.PubMedCrossRefGoogle Scholar
  129. 129.
    Sheehan DW, Klocke RA, Fahri LE. Hypoxic pulmonary vasoconstriction: how strong, how fast? Respir Physiol. 1992;87:337–72.CrossRefGoogle Scholar
  130. 130.
    Shibata K, Cregg N, Engelberts D, Takeuchi A, Fedorko L, Kavanagh BP. Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med. 1998;158:1578–84.PubMedCrossRefGoogle Scholar
  131. 131.
    Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol. 2006;291:L941–9.Google Scholar
  132. 132.
    Shimokawa O, Matsui H, Nagano Y, Kaneko T, Shibahara T, Nakahara A, et al. Neoplastic transformation and induction of H, K –ATPase by N-methyl-N′-nitro-N-nitrosoguanidine in the gastric epithelial RGM-1cell line. In Vitro Cell Dev Biol Anim. 2008;44:26–30.PubMedCrossRefGoogle Scholar
  133. 133.
    Sillos EM, Shenep JL, Burghen GA, Pui CH, Behm FG, Sandlund JT. Lactic acidosis: a metabolic complication of hematologic malignancies. Cancer. 2001;92:2237–46.PubMedCrossRefGoogle Scholar
  134. 134.
    Silva AS, Yunes J, Gillies RJ, Gatenby RA. The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res. 2009;69:2677–84.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Slinger P, Bludell PE, Metcalf IR. Management of massive grain aspiration. Anesthesiology. 1997;87:993–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Snow JB, Kitzis V, Norton CE, Torres SN, Johnson KD, Kanagy NL, et al. Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. J Appl Physiol. 2008;104:110–8.PubMedCrossRefGoogle Scholar
  137. 137.
    Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N Engl J Med. 1992;327:1564–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Stock C, Gassner B, Hauck CR, Arnold H, Mally S, et al. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol. 2005;567:225–38.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Svichar N, Chesler M. Surface carbonic anhydrase activity on astrocytes and neurons facilitates lactate transport. Glia. 2003;41:415–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Swenson ER, Duncan T, Goldberg SV, Ahmad S, Ramirez G, Schoene RB. The effect of hypoxia in humans and its relationship to the hypoxic ventilatory response. J Appl Physiol. 1995;78:377–83.PubMedGoogle Scholar
  141. 141.
    Swenson ER, Robertson HT, Hlastala MP. Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia. Am J Respir Crit Care Med. 1994;149:1563–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Swenson ER. Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression. Eur Respir J. 1998;12:1242–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Swenson ER. Hypercapnic acidosis and sepsis: sailing too close to the wind? Anesthesiology. 2010;112:269–71.PubMedCrossRefGoogle Scholar
  144. 144.
    Swenson ER. Metabolic acidosis. Respir Care. 2001;46:342–53.PubMedGoogle Scholar
  145. 145.
    Swietach P, Hulikova A, Vaughan-Jones R, Harris AL. New insights into the physiological role of carbonic anhydrase IX in tumor pH regulation. Oncogene. 2010;29:5609–21.CrossRefGoogle Scholar
  146. 146.
    Swietach P, Patier S, Supuran CT, Harris AL, Vaughan-Jones RD. The role of carbonic anhydrase 9 in regulating extracellular and intracellular pH in three dimensional tumor cell growths. J Biol Chem. 2009;284:20299–310.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Taylor DV, Boyajian JG, James N, Woods D, Chicz-Demet A, Wilson AF, Sandman CA. Acidosis stimulates beta endorphin release during exercise. J Appl Physiol. 1994;77:1913–8.PubMedGoogle Scholar
  148. 148.
    Teicher BA, Liu SD, Holden SA, Herman TS. A carbonic anhydrase inhibitor as a potential modulator of cancer therapies. Anticancer Res. 1993;13:1549–56.PubMedGoogle Scholar
  149. 149.
    Turek Z, Kreuzer F, Scotto P, Rakusan K. The effect of blood O2 affinity on the efficiency of O2 transport in blood at hypoxic hypoxia. Adv Exp Med Biol. 1984;180:357–68.PubMedCrossRefGoogle Scholar
  150. 150.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Verkman AS, Hara-Chikuma M, Papadopoulus MC. Aquaporins- new players in cancer biology. J Mol Med. 2008;86:523–9.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Volk T, Jahde E, Fortmeyer HP, Glusenklamp KH, Rajewsky MF. pH in human tumor xenografts; effects of intravenous administration of glucose. Br J Cancer. 1993;68:492–500.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Wagner PD, Wagner HE, Groves BM, Cymerman A, Houston CS. Hemoglobin P(50) during a simulated assent of Mt Everest, operation Everest II. High Alt Med Biol. 2007;8:32–42.PubMedCrossRefGoogle Scholar
  154. 154.
    Wang J, Harrison-Shostak DC, Lemasters JJ, Herman B. Contribution of pH-dependent group II phospholipase A2 to chemical hypoxic injury in rat hepatocytes. FASEB J. 1996;10:1319–25.PubMedGoogle Scholar
  155. 155.
    Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res. 2006;98:1528–37.PubMedCrossRefGoogle Scholar
  156. 156.
    Wang YF, Fan ZK, Cao Y, Yu DS, Zhang YQ, Wang YS. 2-methoxyestradiol inhibits the up-regulation of AQP4 and AQP1 expression after spinal cord injury. Brain Res. 2011;1370:220–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Siriani AC, et al. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and neuroprotective in experimental models of ischemic injury. Stroke. 2009;40:1877–85.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Wang Z, Su F, Bruhn A, Yang X, Vincent JL. Acute hypercapnia improves indices of tissue oxygenation more than dobutamine in septic shock. Am J Respir Crit Care Med. 2008;177:178–83.PubMedCrossRefGoogle Scholar
  159. 159.
    Warburg O. The metabolism of tumors. London: Arnold Constable; 1930.Google Scholar
  160. 160.
    Wilkerson DP, Campbell IT, Blackwell JR, Berger NJ, Jones AM. Influence of dichloroacetate on pulmonary gas exchange and ventilation during incremental exercise in healthy humans. Respir Physiol Neurobiol. 2009;168:224–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Willam C, Warnecke C, Schefold JC, Kügler J, Koehne P, Frei U, Wiesener M, Eckardt KU. Inconsistent effects of acidosis on HIF-alpha protein and its target genes. Pflugers Arch. 2006;451:534–43.PubMedCrossRefGoogle Scholar
  162. 162.
    Winum JY, Scozzafava A, Montero JL, Supuran CT. Inhibition of carbonic anhydrase IX: a new strategy against cancer. Anticancer Agents Med Chem. 2009;9:693–702.PubMedCrossRefGoogle Scholar
  163. 163.
    Wykoff CC, Beasley NJP, Watson PH, Turner KJ, Pastorek J, Sibtain A, et al. Hypoxia-inducible expression of tumor -associated carbonic anhydrases. Cancer Res. 2000;60:7075–83.PubMedGoogle Scholar
  164. 164.
    Xiang Y, Ma B, Yu HM, Li ZJ. Acetazolamide suppresses tumor metastasis and related protein expression in mice bearing Lewis lung carcinoma. Acta Pharmacol Sin. 2002;23:745–51.PubMedGoogle Scholar
  165. 165.
    Xu J, Peng Z, Li R, Dou T, Xu W, Gu G, et al. Normoxic induction of cerebral HIF-1alpha by acetazolamide in rats: role of acidosis. Neurosci Lett. 2009;451:274–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Xu L, Glassford AJ, Garcia AJ, Giffard RG. Acidosis reduces neuronal apoptosis. Neuroreport. 1998;9:875–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Zager RA, Schimp BA, Gmur DJ. Physiological pH: effects on posthypoxic proximal tubular injury. Circ Res. 1993;72:837–46.PubMedCrossRefGoogle Scholar
  168. 168.
    Zatovicova M, Jelenska L, Hulikova A, Csaderova L, Ditte Z, Ditte P, Goliasova T, Pastorek J, Pastorekova S. Carbonic anhydrase IX as an anticancer therapy target: preclinical evaluation of internalizing monoclonal antibody directed to catalytic domain. Curr Pharm Des. 2010;16:3255–63.PubMedCrossRefGoogle Scholar
  169. 169.
    Zavadova Z, Zavada J. Carbonic anhydrase IX (CA IX) mediates tumor cell interactions with microenvironment. Oncol Rep. 2005;13:977–82.PubMedGoogle Scholar
  170. 170.
    Zheng W, Kuhlicke J, Jäckel K, Eltzschig HK, Singh A, Sjöblom M, et al. Hypoxia inducible factor-1 (HIF-1)-mediated repression of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestinal epithelium. FASEB J. 2009;23:204–13.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Zhou G, Dada LA, Sznajder JI. Regulation of alveolar epithelial function by hypoxia. Eur Respir J. 2008;31:1107–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Pulmonary and Critical Care Medicine, Department of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Department of Physiology and BiophysicsUniversity of WashingtonSeattleUSA
  3. 3.VA Puget Sound Health Care SystemUniversity of WashingtonSeattleUSA

Personalised recommendations