Advertisement

Aggregation Functions for Recommender Systems

  • Gleb Beliakov
  • Tomasa Calvo
  • Simon James

Abstract

This chapter gives an overview of aggregation functions and their use in recommender systems. The classical weighted average lies at the heart of various recommendation mechanisms, often being employed to combine item feature scores or predict ratings from similar users. Some improvements to accuracy and robustness can be achieved by aggregating different measures of similarity or using an average of recommendations obtained through different techniques. Advances made in the theory of aggregation functions therefore have the potential to deliver increased performance to many recommender systems. We provide definitions of some important families and properties, sophisticated methods of construction, and various examples of aggregation functions in the domain of recommender systems.

References

  1. 1.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., and Tuzhilin, A.: Incorporating contextual information in recommender systems using a multi-dimensional approach, ACM Transactions on information systems, 23(1), 103–145 (2005)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G. and Kwon, Y.: New Recommendation Techniques for Multicriteria Rating Systems. IEEE Intelligent Systems, 22(3), 48–55 (2007)CrossRefGoogle Scholar
  3. 3.
    Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Information Sciences, 178, 37–51 (2008)CrossRefGoogle Scholar
  4. 4.
    Al-Shamri, M.Y.H. and Bharadwaj, K.K.: Fuzzy-genetic approach to recommender systems based on a novel hybrid user model. Expert Systems with Applications, 35, 1386–1399 (2008)CrossRefGoogle Scholar
  5. 5.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Balabanovic, M. and Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Comm. ACM, 40(3), 66–72 (1997)Google Scholar
  7. 7.
    Beliakov, G.: Monotone approximation of aggregation operators using least squares splines. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems, 10, 659–676 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Beliakov, G.: How to build aggregation operators from data? Int. J. Intelligent Systems, 18, 903–923 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Beliakov, G.: FMTools package, version 1.0, http://www.deakin.edu.au/%7Egleb/aotool.html,(2007)Google Scholar
  10. 10.
    Beliakov, G., Bustince, H., Goswami, D.P., Mukherjee, U.K. and Pal, N.R.: On averaging operators for Atanassov’s intuitionistic fuzzy sets. Information Sciences, 181, 1116–1124 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Beliakov, G. and Calvo, T.: Construction of Aggregation Operators With Noble Reinforcement. IEEE Transactions on Fuzzy Systems, 15(6), 1209–1218 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Beliakov, G., Pradera, A. and Calvo, T.: Aggregation Functions: A guide for practitioners. Springer, Heidelberg, Berlin, New York (2007)Google Scholar
  13. 13.
    Beliakov, G., Calvo, T. and James, S: On Lipschitz properties of generated aggregation functions. Fuzzy Sets and Systems, 161, 1437–1447 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Beliakov, G. and James, S: Using Choquet Integrals for kNN Approximation and Classification. In Gary G. Feng (ed.), 2008 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), 1311–1317 (2008)Google Scholar
  15. 15.
    Beliakov, G. and James, S: On extending generalized Bonferroni means to Atanassov orthopairs in decision making contexts, Fuzzy Sets and Systems, 211, 84–98 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Beliakov, G. and James, S: Stability of weighted penalty-based aggregation functions, Fuzzy Sets and Systems, 226, 1–18 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Bobadilla, J., Ortega, F., Hernando, A. and Gutiérrez, A.: Recommender systems survey, Knowledge-Based Systems, 46, 109–132 (2013)CrossRefGoogle Scholar
  18. 18.
    Bolton, J., Gader, P. and Wilson, J.N.: Discrete Choquet Integral as a Distance Metric. IEEE Trans. on Fuzzy Systems, 16(4), 1107–1110 (2008)CrossRefGoogle Scholar
  19. 19.
    Buchanan, B. and Shortliffe, E.: Rule-based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA (1984)Google Scholar
  20. 20.
    Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer, Dordrecht (2003)zbMATHCrossRefGoogle Scholar
  21. 21.
    Burke, R.: Hybrid Recommender Systems: Survey and Experiments, User Modeling and User-adapted interaction, 12(4), 331–370 (2002)zbMATHCrossRefGoogle Scholar
  22. 22.
    Calvo, T. and Beliakov, G.: Aggregation functions based on penalties, Fuzzy Sets and Systems, 161, 1420–1436 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Calvo, T., Kolesárová, A., Komorníková, M. and Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G. and Mesiar, R. (eds.) Aggregation Operators. New Trends and Applications, pp. 3–104. Physica-Verlag, Heidelberg, New York (2002)CrossRefGoogle Scholar
  24. 24.
    Chen, Y.-L. and Cheng, L.-C.: A novel collaborative filtering approach for recommending ranked items. Expert Systems with Applications, 34, 2396–2405 (2008)CrossRefGoogle Scholar
  25. 25.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D. and Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In Proceedings of SIGIR 99 Workshop on Recommender Systems: Algorithms and Evaluation, Berkeley, CA (1999)Google Scholar
  26. 26.
    Campos, L.M.d., Fernández-Luna, J.M. and Huete, J.F.: A collaborative recommender system based on probabilistic inference from fuzzy observations. Fuzzy Sets and Systems, 159, 1554–1576 (2008)Google Scholar
  27. 27.
    Dubois, D. and Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  28. 28.
    Dubois, D. and Prade, H.: Fundamentals of Fuzzy Sets. Kluwer, Boston (2000)zbMATHCrossRefGoogle Scholar
  29. 29.
    Dubois, D., Hllermeier, E., and Prade, H.: Fuzzy methods for case-based recommendation and decision support. J. Intell. Inform. Systems, 27(2), 95–115 (2006)CrossRefGoogle Scholar
  30. 30.
    Duda, R. Hart, P. and Nilsson, N.: Subjective Bayesian methods for rule-based inference systems. In Proc. Nat. Comput. Conf. (AFIPS), volume 45, 1075–1082 (1976)Google Scholar
  31. 31.
    Garcia, I., Sebastia, L. and Onaindia, E.: On the design of individual and group recommender systems for tourism, Expert Systems with Applications, 38, 7683–7692 (2011)CrossRefGoogle Scholar
  32. 32.
    Grabisch, M., Kojadinovic, I., and Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. European Journal of Operational Research. 186, 766–785 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Kaymak, U. and van Nauta Lemke, H.R.: Selecting an aggregation operator for fuzzy decision making. In 3rd IEEE Intl. Conf. on Fuzzy Systems, volume 2, 1418–1422 (1994)Google Scholar
  34. 34.
    Klement, E.P., Mesiar, R. and Pap, E.: Triangular Norms. Kluwer, Dordrecht, (2000)zbMATHCrossRefGoogle Scholar
  35. 35.
    Kojadinovic, I. and Grabisch, M.: Non additive measure and integral manipulation functions, R package version 0.2, http://www.polytech.univ-nantes.fr/kappalab, (2005)
  36. 36.
    Krawczyk, H., Knopa, R., Lipczynska, K., and Lipczynski, M.: Web-based Endoscopy Recommender System - ERS. In International Conference on Parallel Computing in Electrical Engineering (PARELEC’00), Quebec, Canada, 257–261 (2000)Google Scholar
  37. 37.
    Linden, G., Smith, B., and York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80 (2003)Google Scholar
  38. 38.
    Mayor, G., and Calvo, T.: Extended aggregation functions. In IFSA’97, volume 1, Prague, 281–285 (1997)Google Scholar
  39. 39.
    Miller, B.N., Albert, I., Lam, S.K., Konstan, J.A., and Riedl, J.: MovieLens unplugged: experiences with an occasionally connected recommender system. In Proceedings of the 8th international ACM conference on Intelligent user interfaces, Miami, USA, 263–266 (2003)Google Scholar
  40. 40.
    Resnick, P., Iakovou, N., Sushak, M., Bergstrom, P., and Riedl, J.: GroupLens: An open architecture for collaborative filtering of Netnews. In Proceedings of ACM conference on computer supported cooperative work, Chapel Hill, NC, 175–186 (1994)Google Scholar
  41. 41.
    Rojas, K., Gómez, D., Montero, J., and Rodríguez, J. T.: Strictly stable families of aggregation operators, Fuzzy Sets and Systems, 228, 44–63 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Salton, G. and McGill, M.: Introduction to Modern Information retrieval. McGraw Hill, New York (1983)zbMATHGoogle Scholar
  43. 43.
    Schafer, J.B., Konstan, J.A., and Riedl, J.: E-commerce recommendation applications, Data Mining and Knowledge Discover, 5, 115–153 (2001)zbMATHCrossRefGoogle Scholar
  44. 44.
    Santini, S. and Jain, R.: Similarity Measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9), 871–883 (1999)CrossRefGoogle Scholar
  45. 45.
    Ujjin, S., and Bentley, P.: Using evolutionary to learn user preferences. In: Tan, K., Lim, M., Yao, X. and Wang, L. (eds.). Recent advances in simulated evolution and learning, pp. 20–40. World Scientific Publishing (2004)Google Scholar
  46. 46.
    Victor, P., Cornelis, C., De Cock, M. and Herrera-Viedma, E.: Practical aggregation operators for gradual trust and distrust, Fuzzy Sets and Systems, 184, 126–147 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Vu, H. Q., Beliakov, G., and Li, G.: A Choquet integral toolbox and its application in customers preference analysis, in Data Mining Applications with R, Elsevier (2013)Google Scholar
  48. 48.
    Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. on Systems, Man and Cybernetics, 18, 183–190 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Yager, R.: Noble Reinforcement in Disjunctive Aggregation Operators. IEEE Transactions on Fuzzy Systems, 11(6) 754–767 (2003)CrossRefGoogle Scholar
  50. 50.
    Yager, R. R. and Filev, D. P.: Induced ordered weighted averaging operators. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 20(2), 141–150 (1999)Google Scholar
  51. 51.
    Yager, R. and Rybalov. A.: Uninorm aggregation operators. Fuzzy Sets and Systems, 80, 111–120 (1996)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Information TechnologyDeakin UniversityBurwoodAustralia
  2. 2.Departamento de Ciencias de la ComputaciónUniversidad de AlcaláMadridSpain

Personalised recommendations