Resting-State Networks

  • Rami K. Niazy
  • David M. Cole
  • Christian F. Beckmann
  • Stephen M. Smith
Part of the Biological Magnetic Resonance book series (BIMR, volume 30)


Resting-state networks (RSNs) in fMRI are ‘activation-like’, spatially structured maps of grey matter brain areas exhibiting temporally correlated signal changes, which are believed to reflect neuronal activities of the ‘resting’ brain and which robustly and consistently appear in both resting and task data. They are purported to reflect the intrinsic energy demands of neuron populations that fire together with a common functional purpose. This chapter introduces the concept of RSNs and why they are of interest to neuroscience, describes their characteristics, reviews the methods used for their analysis, and discusses a few areas of application.


Functional Connectivity Independent Component Analysis Independent Component Analysis Bold Signal Physiological Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72PubMedCrossRefGoogle Scholar
  2. Albert N, Robertson E, Mehta P, Miall R (2009) Resting state networks and memory consolidation. Commun Integr Biol 2(6):530–532PubMedCentralPubMedCrossRefGoogle Scholar
  3. Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF, Ringe WK, Lipton AM, ­Brooker M, McDonald E, Rubin CD, Cullum CM (2007) Reduced hippocampal functional connectivity in alzheimer disease. Arch Neurol 64(10):1482–1487PubMedCrossRefGoogle Scholar
  4. Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ (2005a) ­Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry 57(10):1079–1088PubMedCrossRefGoogle Scholar
  5. Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ (2005b) ­Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsycho Pharmacol 30(7):1334–1344.Google Scholar
  6. Anand A, Li Y, Wang Y, Lowe MJ, Dzemidzic M (2009) Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res 171(3):189–198PubMedCentralPubMedCrossRefGoogle Scholar
  7. Andrews-Hanna J, Snyder A, Vincent J, Lustig C, Head D, Raichle M, Buckner R (2007) ­Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935PubMedCentralPubMedCrossRefGoogle Scholar
  8. Antrobus J (1968) Information theory and stimulus-independent. Br J Psychol 59:423–430CrossRefGoogle Scholar
  9. Baker AP, Brookes MJ, Rezek IA, Smith SM, Behrens T, Probert Smith PJ, Woolrich M (2014) Fast transient networks in spontaneous human brain activity. ELife 3:e01867Google Scholar
  10. Beckmann C, Smith S (2004) Probabilistic independent component analysis for functional ­magnetic resonance imaging. IEEE Trans Med Imaging 23(2):137–152PubMedCrossRefGoogle Scholar
  11. Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject fMRI analysis. Neuroimage 25(1):294–311PubMedCrossRefGoogle Scholar
  12. Beckmann C, De Luca M, Devlin J, Smith S (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013PubMedCentralPubMedCrossRefGoogle Scholar
  13. Beckmann CF, Mackay CE, Filippini N, Smith SM (2009) Group comparison of resting-state fMRI data using multi-subject ICA and dual regression. Neuroimage 47(Supp 1):S148Google Scholar
  14. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757PubMedCrossRefGoogle Scholar
  15. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, Cozzone PJ, Chauvel P, Ranjeva JP, Bartolomei F, Guye M (2009) Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 30(5):1580–1591PubMedCrossRefGoogle Scholar
  16. Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Duyn JH (2009a) Modulation of spontaneous fMRI activity in human visual cortex by behavioral state. Neuroimage 45(1):160–168PubMedCentralPubMedCrossRefGoogle Scholar
  17. Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, Duyn JH (2009b) Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 t study. Magn Reson Imaging 27(8):1019–1029PubMedCentralPubMedCrossRefGoogle Scholar
  18. Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31(4):1536–1548PubMedCrossRefGoogle Scholar
  19. Birn R, Murphy K, Bandettini P (2008) The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 29(7):740–750PubMedCentralPubMedCrossRefGoogle Scholar
  20. Biswal B, Yetkin F, VM H, Hyde J (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  21. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SARB, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, WhitfieldGabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107(10):4734–4739PubMedCentralPubMedCrossRefGoogle Scholar
  22. Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RWJ, The’berge J, Schaefer B, Williamson P (2007) Spontaneous low-frequency fluctuations in the bold signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33(4):1004–1012PubMedCentralPubMedCrossRefGoogle Scholar
  23. Bluhm R, Williamson P, Lanius R, The’berge J, Densmore M, Bartha R, Neufeld R, Osuch E (2009a) Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin Neurosci 63(6):754–761PubMedCrossRefGoogle Scholar
  24. Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RWJ, The’berge J, Schaefer B, Williamson PC (2009b) Retrosplenial cortex connectivity in schizophrenia. Psychiatry Res 174(1):17–23PubMedCrossRefGoogle Scholar
  25. Bluhm RL, Williamson PC, Osuch EA, Frewen PA, Stevens TK, Boksman K, Neufeld RWJ, The’berge J, Lanius RA (2009c) Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J Psychiatry Neurosci 34(3):187–194PubMedCentralPubMedGoogle Scholar
  26. Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Hustinx R, Maquet P, Laureys S (2008) Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 1129:119–129PubMedCentralPubMedCrossRefGoogle Scholar
  27. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30(8):2393–2400PubMedCrossRefGoogle Scholar
  28. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci U S A 108(40):16783–16788Google Scholar
  29. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJS (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33(3):279–296PubMedCrossRefGoogle Scholar
  30. Buckner R, Vincent J (2007) Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37(4):1091–1096PubMedCrossRefGoogle Scholar
  31. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, ­function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  32. Calhoun V, Adali T, Pearlson G, Pekar J (2001) A method for making group inferences from ­functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151PubMedCrossRefGoogle Scholar
  33. Calhoun VD, Adali T, Pekar JJ (2004a) A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. Magn Reson Imaging 22(9):1181–1191PubMedCrossRefGoogle Scholar
  34. Calhoun VD, Pekar JJ, Pearlson GD (2004b) Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI. Neuropsychol Pharmacol 29(11):2097–2017CrossRefGoogle Scholar
  35. Cao Q, Zang Y, Sun L, Sui M, Long X, Zou Q, Wang Y (2006) Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance ­imaging study. Neuroreport 17(10):1033–1036PubMedCrossRefGoogle Scholar
  36. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, Shaw D, Shehzad Z, Martino AD, Biswal B, Sonuga-Barke EJS, Rotrosen J, Adler LA, Milham MP (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attentiondeficit/hyperactivity disorder. Biol Psychiatry 63(3):332–337PubMedCentralPubMedCrossRefGoogle Scholar
  37. Cauda F, Micon BM, Sacco K, Duca S, D’Agata F, Geminiani G, Canavero S (2009a) Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80(4):429–431PubMedCrossRefGoogle Scholar
  38. Cauda F, Sacco K, D’Agata F, Duca S, Cocito D, Geminiani G, Migliorati F, Isoardo G (2009b) Low-frequency bold fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci 10:138PubMedCentralPubMedCrossRefGoogle Scholar
  39. Cauda F, Sacco K, Duca S, Cocito D, D’Agata F, Geminiani GC, Canavero S (2009c) Altered resting state in diabetic neuropathic pain. PLoS One 4(2):e4542PubMedCentralPubMedCrossRefGoogle Scholar
  40. Cauda F, D’Agata F, Sacco K, Duca S, Cocito D, Paolasso I, Isoardo G, Geminiani G (2010) Altered resting state attentional networks in diabetic neuropathic pain. J Neurol Neurosurg Psychiatry 81(7):806–811PubMedCrossRefGoogle Scholar
  41. Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47(4):1448–1459PubMedCentralPubMedCrossRefGoogle Scholar
  42. Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity ­measured with fMRI. Neuroimage 50(1):81–98PubMedCentralPubMedCrossRefGoogle Scholar
  43. Chang C, Liu Z, Chen MC, Liu X, Duyn JH (2013) EEG correlates of time-varying BOLD functional connectivity. Neuroimage 72:227–236Google Scholar
  44. Cherkassky VL, Kana RK, Keller TA, Just MA (2006) Functional connectivity in a baseline resting-state network in autism. Neuroreport 17(16):1687–1690PubMedCrossRefGoogle Scholar
  45. Christoff K, Gordon A, Smallwood J, Smith R, Schooler J (2009) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci U S A 106(21):8719PubMedCentralPubMedCrossRefGoogle Scholar
  46. Church JA, Fair DA, Dosenbach NUF, Cohen AL, Miezin FM, Petersen SE, Schlaggar BL (2009) Control networks in paediatric tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132(Pt 1):225–238PubMedCentralPubMedCrossRefGoogle Scholar
  47. Cole D, Beckmann C, Long C, Matthews P, Durcan M, Beaver J (2010a) Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. NeuroImage 52(2):590–599PubMedCrossRefGoogle Scholar
  48. Cole D, Smith S, Beckmann C (2010b) Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Front Syst Neurosci 4:1–15Google Scholar
  49. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity mr imaging. AJNR Am J Neuroradiol 21(9):1636–1644PubMedGoogle Scholar
  50. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in ­“resting-state” data. AJNR Am J Neuroradiol 22(7):1326–1333PubMedGoogle Scholar
  51. Craddock RC, Milham MP, LaConte SM (2013) Predicting intrinsic brain activity. Neuroimage 82:127–136Google Scholar
  52. Damoiseaux J, Rombouts S, Barkhof F, Scheltens P, Stam C, Smith S, Beckmann C (2006) ­Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853PubMedCentralPubMedCrossRefGoogle Scholar
  53. Damoiseaux J, Beckmann C, Arigita E, Barkhof F, Scheltens P, Stam C, Smith S, Rombouts S (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18(8):1856–1864PubMedCrossRefGoogle Scholar
  54. David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, Depaulis A (2008) Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 6(12):e315PubMedCentralCrossRefGoogle Scholar
  55. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4):1359–1367PubMedCrossRefGoogle Scholar
  56. de Munck JC, Gonc¸alves SI, Huijboom L, Kuijer JPA, Pouwels PJW, Heethaar RM, da Silva FHL (2007) The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 35(3):1142–1151PubMedCrossRefGoogle Scholar
  57. de Pasquale F, Penna SD, Snyder AZ, Lewis C, Mantini D, Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL, Corbetta M (2010) Temporal dynamics of spontaneous meg activity in brain networks. Proc Natl Acad Sci U S A 107(13):6040–6045PubMedCentralPubMedCrossRefGoogle Scholar
  58. Doria V, Beckmann C, Arichi T, Merchant N, Groppo M, Turkheimer F, Counsell S, Murgasova M, Aljabar P, Nunes R, Larkman D, Rees G, Edwards A (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci U S A 107(46):20015–20020Google Scholar
  59. Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50(5):799–812PubMedCentralPubMedCrossRefGoogle Scholar
  60. Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A 104(26):11073–11078PubMedCentralPubMedCrossRefGoogle Scholar
  61. Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Salle FD (2005) Independent component analysis of fMRI group studies by ­self-organizing clustering. Neuroimage 25(1):193–205PubMedCrossRefGoogle Scholar
  62. Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD (2009) Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety ­disorder. Arch Gen Psychiatry 66(12):1361–1372PubMedCrossRefGoogle Scholar
  63. Fair D, Dosenbach N, Church J, Cohen A, Brahmbhatt S, Miezin F, Barch D, Raichle M, Petersen S, Schlaggar B (2007) Development of distinct control networks through segregation and ­integration. Proc Natl Acad Sci U S A 104(33):13507PubMedCentralPubMedCrossRefGoogle Scholar
  64. Fair DA, Cohen AL, Dosenbach NUF, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 105(10):4028–4032PubMedCentralPubMedCrossRefGoogle Scholar
  65. Filippini N, MacIntosh B, Hough M, Goodwin G, Frisoni G, Smith S, Matthews P, Beckmann C, Mackay C (2009) Distinct patterns of brain activity in young carriers of the APOE-e4 allele. Proc Natl Acad Sci USA 106:7209–7214PubMedCentralPubMedCrossRefGoogle Scholar
  66. Fox MD, Greicius MD (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:1–13Google Scholar
  67. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711PubMedCrossRefGoogle Scholar
  68. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678PubMedCentralPubMedCrossRefGoogle Scholar
  69. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283PubMedCentralPubMedCrossRefGoogle Scholar
  70. Fransson P (2005) Spontaneous low-frequency bold signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26(1):15–29Google Scholar
  71. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U (2007) Restingstate networks in the infant brain. Proc Natl Acad Sci U S A 104(39):15531–15536PubMedCentralPubMedCrossRefGoogle Scholar
  72. Fransson P, Skiöld B, Engström M, Hallberg B, Mosskin M, Aden U, Lagercrantz H, Blennow M (2009) Spontaneous brain activity in the newborn brain during natural sleep–an fMRI study in infants born at full term. Pediatr Res 66(3):301–305PubMedCrossRefGoogle Scholar
  73. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302Google Scholar
  74. Friston KJ, Kahan J, Razi A, Stephan KE, Sporns O (2014a) On nodes and modes in resting state fMRI. Neuroimage 99:533–547Google Scholar
  75. Friston KJ, Kahan J, Biswal B, Razi A (2014b) A DCM for resting state fMRI. Neuroimage 94:396–407Google Scholar
  76. Fukunaga M, Horovitz SG, van Gelderen P, de Zwart JA, Jansma JM, Ikonomidou VN, Chu R, Deckers RHR, Leopold DA, Duyn JH (2006) Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Reson Imaging 24(8):979–992PubMedCrossRefGoogle Scholar
  77. Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W (2009) Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci U S A 106(16):6790–6795PubMedCentralPubMedCrossRefGoogle Scholar
  78. Glahn D, Winkler A, Kochunov P, Almasy L, Duggirala R, Carless M, Curran J, Olvera R, Laird A, Smith S (2010) Genetic control over the resting brain. Proc Natl Acad Sci U S A 107(3):1223PubMedCentralPubMedCrossRefGoogle Scholar
  79. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: retroicor. Magn Reson Med 44(1):162–167PubMedCrossRefGoogle Scholar
  80. Goebel R, Roebroeck A, Kim D, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and granger causality mapping. Magn Reson Imaging 21(10):1251–1261PubMedCrossRefGoogle Scholar
  81. Goldman RI, Stern JM, Engel J, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13(18):2487–2492PubMedCentralPubMedCrossRefGoogle Scholar
  82. Greicius MD, Menon V (2004) Default-mode activity during a passive sensory task: ­uncoupled from deactivation but impacting activation. J Cogn Neurosci 16(9):1484–1492PubMedCrossRefGoogle Scholar
  83. Greicius M, Krasnow B, Reiss A (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258Google Scholar
  84. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity ­distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101(13):4637–4642PubMedCentralPubMedCrossRefGoogle Scholar
  85. Greicius M, Flores B, Menon V, Glover G, Solvason H, Kenna H, Reiss A, Schatzberg A (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol PsychiatryGoogle Scholar
  86. Greicius M, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta S, Reiss A, Menon V (2008a) ­Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7):839–847PubMedCentralPubMedCrossRefGoogle Scholar
  87. Greicius MD, Barad M, Ueno T, Mackey SC (2008b) Chronic pain remodels the brains salience network: a resting-state fMRI study. In: 14th intl meeting of the organization for human brain mapping, MelbourneGoogle Scholar
  88. Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini N, Mackay CE, Moeller S, Xu J, Yacoub E, Baselli G, Ugurbil K, Miller KL, Smith SM (2014) ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 95:232–247Google Scholar
  89. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting ­human brain. Nat Rev Neurosci 2(10):685–694PubMedCrossRefGoogle Scholar
  90. Harrison BJ, Pujol J, López-Solà M, Hernández-Ribas R, Deus J, Ortiz H, Soriano-Mas C, Yücel M, Pantelis C, Cardoner N (2008a) Consistency and functional specialization in the default mode brain network. Proc Natl Acad Sci U S A 105(28):9781–9786PubMedCentralPubMedCrossRefGoogle Scholar
  91. Harrison BJ, Pujol J, Ortiz H, Fornito A, Pantelis C, Yücel M (2008b) Modulation of brain resting-state networks by sad mood induction. PLoS One 3(3):e1794PubMedCentralPubMedCrossRefGoogle Scholar
  92. Hayasaka S, Laurienti PJ (2010) Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. Neuroimage 50(2):499–508PubMedCentralPubMedCrossRefGoogle Scholar
  93. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of ­functional connectivity in frontoparietal networks underlies behavioral deficits in spatial ­neglect. Neuron 53(6):905–918PubMedCrossRefGoogle Scholar
  94. Hedden T, Dijk KRAV, Becker JA, Mehta A, Sperling RA, Johnson KA, Buckner RL (2009) ­Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 29(40):12686–12694PubMedCentralPubMedCrossRefGoogle Scholar
  95. Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22(3):1214–1222PubMedCrossRefGoogle Scholar
  96. Hong LE, Gu H, Yang Y, Ross TJ, Salmeron BJ, Buchholz B, Thaker GK, Stein EA (2009) ­Association of nicotine addiction and nicotine’s actions with separate cingulate cortex functional circuits. Arch Gen Psychiatry 66(4):431–441PubMedCentralPubMedCrossRefGoogle Scholar
  97. Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency bold fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29(6):671–682PubMedCrossRefGoogle Scholar
  98. Horovitz S, Braun A, Carr W (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A 106(27):11376–11381Google Scholar
  99. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C (2013) Dynamic functional connectivity: promise, issues, and interpretation. Neuroimage 80:360–378Google Scholar
  100. Jafri M, Pearlson G, Stevens M, Calhoun V (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39:1666–1681PubMedCentralPubMedCrossRefGoogle Scholar
  101. Jann K, Kottlow M, Dierks T, Boesch C, Koenig T (2010) Topographic electrophysiological ­signatures of fMRI resting state networks. PLoS One 5(9):e12945Google Scholar
  102. Johansen-Berg H, Behrens T, Sillery E, Ciccarelli O, Thompson A, Smith S, Matthews P (2005) Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 15(1):31–39PubMedCrossRefGoogle Scholar
  103. Kahan J, Urner M, Moran R, Flandin G, Marreiros A, Mancini L, White M, Thornton J, Yousry T, Zrinzo L, Hariz M, Limousin P, Friston K, Foltynie T (2014) Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain 137(Pt 4):1130–1144Google Scholar
  104. Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional brain networks mediates behavioral variability. Neuroimage 39(1):527–537PubMedCrossRefGoogle Scholar
  105. Kelly C, de Zubicaray G, Di Martino A, Copland D, Reiss P, Klein D, Castellanos F, Milham M, McMahon K (2009) L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 29(22):7364–7378PubMedCentralPubMedCrossRefGoogle Scholar
  106. Kennedy DP, Courchesne E (2008) The intrinsic functional organization of the brain is altered in autism. Neuroimage 39(4):1877–1885PubMedCrossRefGoogle Scholar
  107. Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen A, Tervonen O (2003) Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19(2 Pt 1):253–260PubMedCrossRefGoogle Scholar
  108. Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang YF, Tervonen O (2009) Functional segmentation of the brain cortex using high model order group pica. Hum Brain Mapp 30(12):3865–3886PubMedCrossRefGoogle Scholar
  109. Krüger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46(4):631–637PubMedCrossRefGoogle Scholar
  110. Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT (2013) Networks of tasks coactivation. Neuroimage 80:505–514Google Scholar
  111. Laufs H (2008) Endogenous brain oscillations and related networks detected by surface ­EEG-combined fMRI. Hum Brain Mapp 29(7):762–769PubMedCrossRefGoogle Scholar
  112. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage 19(4):1463–1476PubMedCrossRefGoogle Scholar
  113. Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A (2006) Where the bold signal goes when alpha EEG leaves. Neuroimage 31(4):1408–1418PubMedCrossRefGoogle Scholar
  114. Lewis C, Baldassarre A, Committeri G, Romani G, Corbetta M (2009) Learning sculpts the ­spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106(41):17558PubMedCentralPubMedCrossRefGoogle Scholar
  115. Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG (2002) Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 225(1):253–259PubMedCrossRefGoogle Scholar
  116. Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, Hao Y (2006) Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17(2):209–213PubMedCrossRefGoogle Scholar
  117. Liu H, Liu Z, Liang M, Hao Y, Tan L, Kuang F, Yi Y, Xu L, Jiang T (2006) Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport 17(1):19–22PubMedCrossRefGoogle Scholar
  118. Liu Y, Yu C, Liang M, Li J, Tian L, Zhou Y, Qin W, Li K, Jiang T (2007) Whole brain functional connectivity in the early blind. Brain 130(Pt 8):2085–2096PubMedCrossRefGoogle Scholar
  119. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain 131(Pt 4):945–961PubMedCrossRefGoogle Scholar
  120. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7(2):119–132, clinical TrialPubMedCrossRefGoogle Scholar
  121. Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP (2002) Multiple ­sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224(1):184–192PubMedCrossRefGoogle Scholar
  122. Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, Rea W, Yang Y, Stein EA (2007) Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci U S A 104(46):18265–18259PubMedCentralPubMedCrossRefGoogle Scholar
  123. Luca MD, Smith S, Stefano ND, Federico A, Matthews PM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167(4):587–594PubMedCrossRefGoogle Scholar
  124. Lui S, Ouyang L, Chen Q, Huang X, Tang H, Chen H, Zhou D, Kemp GJ, Gong Q (2008) Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3t in generalized vs. partial seizure. J Magn Reson Imaging 27(6):1214–1220PubMedCrossRefGoogle Scholar
  125. Mantini D, Perrucci MG, Gratta CD, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104(32):13170–13175PubMedCentralPubMedCrossRefGoogle Scholar
  126. Martino AD, Ross K, Uddin LQ, Sklar AB, Castellanos FX, Milham MP (2009a) Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biol Psychiatry 65(1):63–74PubMedCentralPubMedCrossRefGoogle Scholar
  127. Martino AD, Shehzad Z, Kelly C, Roy AK, Gee DG, Uddin LQ, Gotimer K, Klein DF, Castellanos FX, Milham MP (2009b) Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. Am J Psychiatry 166(8):891–899PubMedCentralPubMedCrossRefGoogle Scholar
  128. Marx E, Deutschländer A, Stephan T, Dieterich M, Wiesmann M, Brandt T (2004) Eyes open and eyes closed as rest conditions: impact on brain activation patterns. Neuroimage 21(4):1818–1824PubMedCrossRefGoogle Scholar
  129. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810):393–395PubMedCentralPubMedCrossRefGoogle Scholar
  130. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, TzourioMazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54(3):287–298PubMedCrossRefGoogle Scholar
  131. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6(3):160–188PubMedCrossRefGoogle Scholar
  132. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRefGoogle Scholar
  133. Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Münte TF (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217(1):147–153PubMedCrossRefGoogle Scholar
  134. Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, Lord C (2009) Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47(2):764–772PubMedCentralPubMedCrossRefGoogle Scholar
  135. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20(1):145–158PubMedCrossRefGoogle Scholar
  136. Morcom A, Fletcher P (2007a) Cognitive neuroscience: the case for design rather than default. Neuroimage 37(4):1097–1099CrossRefGoogle Scholar
  137. Morcom A, Fletcher P (2007b) Does the brain have a baseline? why we should be resisting a rest. Neuroimage 37(4):1073–1082CrossRefGoogle Scholar
  138. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global ­signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905PubMedCentralPubMedCrossRefGoogle Scholar
  139. Murphy K, Birn RM, Bandettini PA (2013) Resting-state fMRI confounds and cleanup. Neuroimage 80:349–359Google Scholar
  140. Niazy RK, Beckmann CF, Smith SM (2006) Investigations into resting state networks temporal characteristics using empirical mode decomposition and ica. In: 12th intl neeting of the organization for human brain mapping, FlorenceGoogle Scholar
  141. Niazy RK, Smith SM, Beckmann CF (2008) Principal frequency of resting state networks. In: 14th intl meeting of the organization for human brain mapping, MelbourneGoogle Scholar
  142. Obrig H, Neufang M, Wenzel R, Kohl M, Steinbrink J, Einhäupl K, Villringer A (2000) Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage 12(6):623–639PubMedCrossRefGoogle Scholar
  143. Ogawa S, Tank D, Menon R, Ellermann J, Kim S, Merkle H, Uğurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic ­resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955PubMedCentralPubMedCrossRefGoogle Scholar
  144. Paakki J, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, Starck T, Remes J, Hurtig T, Haapsamo H, Jussila K, Kuusikko-Gauffin S, Mattila ML, Zang Y, Kiviniemi V (2010) Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 1321:169–179PubMedCrossRefGoogle Scholar
  145. Popa D, Popescu AT, Pare’ D (2009) Contrasting activity profile of two distributed cortical networks as a function of attentional demands. J Neurosci 29(4):1191–201PubMedCentralPubMedCrossRefGoogle Scholar
  146. Raichle M (2010) Two views of brain function. Trends Cogn Sci 14(4):180–190PubMedCrossRefGoogle Scholar
  147. Raichle ME, Gusnard DA (2005) Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 493(1):167–176PubMedCrossRefGoogle Scholar
  148. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476PubMedCrossRefGoogle Scholar
  149. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090; discussion 1097–1099PubMedCrossRefGoogle Scholar
  150. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682PubMedCentralPubMedCrossRefGoogle Scholar
  151. Ramsey J, Hanson S, Hanson C, Halchenko Y (2010) Six problems for causal inference from fMRI. Neuroimage 49(2):1545–1558Google Scholar
  152. Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using granger causality and fMRI. Neuroimage 25(1):230–242Google Scholar
  153. Saini S, DeStefano N, Smith S, Guidi L, Amato MP, Federico A, Matthews PM (2004) Altered cerebellar functional connectivity mediates potential adaptive plasticity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 75(6):840–846PubMedCentralPubMedCrossRefGoogle Scholar
  154. Salek-Haddadi A, Friston KJ, Lemieux L, Fish DR (2003) Studying spontaneous EEG activity with fMRI. Brain Res Brain Res Rev 43(1):110–133PubMedCrossRefGoogle Scholar
  155. Salimi-Khorshidi G et al (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90:449–468Google Scholar
  156. Salvador R, Suckling J, Schwarzbauer C, Bullmore E (2005) Undirected graphs of frequencydependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci 360(1457):937–946PubMedCentralPubMedCrossRefGoogle Scholar
  157. Salvador R, Mart’ınez A, Pomarol-Clotet E, Sarro’ S, Suckling J, Bullmore E (2007) Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. Neuroimage 35(1):83–88PubMedCrossRefGoogle Scholar
  158. Schölvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA (2010) Neural basis of global resting-state fMRI activity. Proc Natl Acad Sci U S A 107(22):10238–10243PubMedCentralPubMedCrossRefGoogle Scholar
  159. Seeley WW, Allman JM, Carlin DA, Crawford RK, Macedo MN, Greicius MD, Dearmond SJ, Miller BL (2007a) Divergent social functioning in behavioral variant frontotemporal dementia and Alzheimer disease: reciprocal networks and neuronal evolution. Alzheimer Dis Assoc Disord 21(4):S50–S57PubMedCrossRefGoogle Scholar
  160. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007b) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356PubMedCentralPubMedCrossRefGoogle Scholar
  161. Seeley WW, Crawford RK, Miller BL, Greicius MD (2008) Cortical neurodegeneration syndromes target human structural-functional covariance networks. In: 14th intl meeting of the organization for human brain mapping, MelbourneGoogle Scholar
  162. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52PubMedCentralPubMedCrossRefGoogle Scholar
  163. Shehzad Z, Kelly A, Reiss P, Gee D, Gotimer K, Uddin L, Lee S, Margulies D, Roy A, Biswal B, Petkova E, Castellanos F, Milham M (2009) The resting brain: unconstrained yet reliable. Cereb Cortex 19(10):2209–2229PubMedCentralPubMedCrossRefGoogle Scholar
  164. Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, Mintun MA (2010) Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 67(6):584–587PubMedCentralPubMedCrossRefGoogle Scholar
  165. Shmuel A, Leopold DA (2008) Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum Brain Mapp 29(7):751–761PubMedCrossRefGoogle Scholar
  166. Shulman G, Corbetta M, Buckner R, Fiez J, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks: I. Increases in subcortical structures and cerebellum but not in nonvisual cortex. J Cogn Neurosci 9(5):624–647PubMedCrossRefGoogle Scholar
  167. Singh KD, Fawcett IP (2008) Transient and linearly graded deactivation of the human default-mode network by a visual detection task. Neuroimage 41(1):100–112PubMedCrossRefGoogle Scholar
  168. Smith SM, Niazy RK, Beckmann CF, Miller K (2008) Resting state networks: neither low frequency nor anti–correlated? In: 14th intl meeting of the organization for human brain mapping, MelbourneGoogle Scholar
  169. Smith S, Fox P, Miller K, Glahn D, Fox P, Mackay C, Filippini N, Watkins K, Toro R, Laird A, Beckmann C (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106(31):13040PubMedCentralPubMedCrossRefGoogle Scholar
  170. Smith S, Miller K, Salimi-Khorshidi G, Webster M, Beckmann C, Nichols T, Ramsey J, Woolrich M (2011) Network modelling methods for fMRI. NeuroImage 59(2):1228–1229Google Scholar
  171. Smyser C, Inder T, Shimony J, Hill J, Degnan A, Snyder A, Neil J (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 20(12):2852–2862Google Scholar
  172. Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, Drzezga A, Förstl H, Kurz A, Zimmer C, Wohlschläger AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 104(47):18760–18765PubMedCentralPubMedCrossRefGoogle Scholar
  173. Sridharan D, Levitin D, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105(34):12569–12574Google Scholar
  174. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3PubMedCentralPubMedCrossRefGoogle Scholar
  175. Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V (2010) Correction of low-frequency physiological noise from the resting state bold fMRI–effect on ICA default mode analysis at 1.5 t. J Neurosci Methods 186(2):179–185PubMedCrossRefGoogle Scholar
  176. Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4(6):e1000100PubMedCentralPubMedCrossRefGoogle Scholar
  177. Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, Sui M, Cao Q, Hu S, Peng M, Zhuo Y (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400(1–2):39–43PubMedCrossRefGoogle Scholar
  178. Tohka J, Foerde K, Aron A, Tom S, Toga A (2008) Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39(3):1227–1245PubMedCentralPubMedCrossRefGoogle Scholar
  179. Uğurbil K et al (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project. Neuroimage 80:80–104Google Scholar
  180. Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103(1):297–321PubMedCentralPubMedCrossRefGoogle Scholar
  181. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJF, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133(Pt 1):161–171PubMedCentralPubMedCrossRefGoogle Scholar
  182. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96(6):3517–3531PubMedCrossRefGoogle Scholar
  183. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Essen DCV, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86PubMedCrossRefGoogle Scholar
  184. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD (2006) Functional connectivity networks are disrupted in left temporal lobe epilepsy. Arch Neurol 59(2):335–343Google Scholar
  185. Wang K, Jiang T, Liang M, Wang L, Tian L, Zhang X, Li K, Liu Z (2006a) Discriminative analysis of early Alzheimer’s disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Comput Assist Interv 9(Pt 2):340–347PubMedGoogle Scholar
  186. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006b) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31(2):496–504PubMedCrossRefGoogle Scholar
  187. Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T (2007) Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp 28(10):967–978PubMedCrossRefGoogle Scholar
  188. Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y (2009) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30(2):638–649PubMedCrossRefGoogle Scholar
  189. Weng S, Wiggins J, Peltier S, Carrasco M, Risi S, Lord C, Monk C (2010) Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res 1313:202–214PubMedCentralPubMedCrossRefGoogle Scholar
  190. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton ME, Green AI, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli JDE, Seidman LJ (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106(4):1279–1284PubMedCentralPubMedCrossRefGoogle Scholar
  191. Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J (2008) Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 29(7):791–801PubMedCrossRefGoogle Scholar
  192. Wise RG, Ide K, Poulin MJ, Tracey I (2004) Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21(4):1652–1664PubMedCrossRefGoogle Scholar
  193. Woolrich MW, Stephan KE (2013) Biophysical network models and the human connectome. Neuroimage 80:330–338Google Scholar
  194. Xiong J, Parsons LM, Gao JH, Fox PT (1999) Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 8(2–3):151–156PubMedCrossRefGoogle Scholar
  195. Yu C, Liu Y, Li J, Zhou Y, Wang K, Tian L, Qin W, Jiang T, Li K (2008) Altered functional connectivity of primary visual cortex in early blindness. Hum Brain Mapp 29(5):533–543PubMedCrossRefGoogle Scholar
  196. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400PubMedCrossRefGoogle Scholar
  197. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91PubMedCrossRefGoogle Scholar
  198. Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Chen Z, Shi J, Liu Y (2009a) Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J Neurol 256(10):1705–1713PubMedCrossRefGoogle Scholar
  199. Zhang Z, Lu G, Zhong Y, Tan Q, Yang Z, Liao W, Chen Z, Shi J, Liu Y (2009b) Impaired attention network in temporal lobe epilepsy: a resting fMRI study. Neurosci Lett 458(3):97–101PubMedCrossRefGoogle Scholar
  200. Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, Liu H, Kuang F (2007) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 417(3):297–302PubMedCrossRefGoogle Scholar
  201. Zhu CZ, Zang YF, Liang M, Tian LX, He Y, Li XB, Sui MQ, Wang YF, Jiang TZ (2005) Discriminative analysis of brain function at resting-state for attention-deficit/hyperactivity disorder. Med Image Comput Comput Assist Interv 8(Pt 2):468–475PubMedGoogle Scholar
  202. Zhu C, Zang Y, Cao Q, Yan C, He Y, Jiang T, Sui M, Wang Y (2008) Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage 40(1):110–120PubMedCrossRefGoogle Scholar
  203. Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF, Zang YF (2008) An improved approach to detection of amplitude of low-frequency fluctuation (alff) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141PubMedCentralPubMedCrossRefGoogle Scholar
  204. Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP (2010a) Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 49(3):2163–2177PubMedCentralPubMedCrossRefGoogle Scholar
  205. Zuo XN, Martino AD, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010b) The oscillating brain: complex and reliable. Neuroimage 49(2):1432–1445PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2015

Authors and Affiliations

  • Rami K. Niazy
    • 1
  • David M. Cole
    • 2
  • Christian F. Beckmann
    • 3
    • 4
  • Stephen M. Smith
    • 5
  1. 1.Biomedical Physics DepartmentKing Faisal Specialist Hospital & Research CentreRiyadhSaudi Arabia
  2. 2.Centre for Neuroscience, Division of Experimental MedicineImperial College London, Hammersmith HospitalLondonUK
  3. 3.Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (DCCN)Radboud University NijmegenNijmegenThe Netherlands
  4. 4.MIRA Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands
  5. 5.Oxford University Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalOxfordUK

Personalised recommendations