Advertisement

The Myotonic Dystrophies

  • Joline DaltonEmail author
  • Jill S. Goldman
  • Jacinda B. Sampson
Chapter

Abstract

Myotonic dystrophy is a progressive, multi-systemic condition causing muscle weakness and myotonia. Additional symptoms include cataracts, gastrointestinal abnormalities, male reduced fertility, diabetes, and cardiac conduction defects. Myotonic dystrophy type 1 (DM1) is caused by a CTG expansion in the DMPK gene and type 2 (DM2) by a CCTG repeat expansion in the ZNF9 gene. Whereas age of onset correlates with repeat size in DM1 with anticipation, onset and severity do not correlate well with the repeat expansion size in DM2. The non-dystrophic myotonic disorders produce myotonia without muscle weakness. These conditions are caused by mutations in ion channel genes.

Keywords

Genetic Counselor Club Foot Myotonic Dystrophy Myotonic Dystrophy Type ZNF9 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Myotonic dystrophy Part 1 (MOV 301,391 kb)

Myotonic dystrophy Part 2 (MOV 259,511 kb)

References

  1. 1.
    Turner, C., & Hilton-Jones, D. (2010). The myotonic dystrophies: Diagnosis and management. Journal of Neurology, Neurosurgery, and Psychiatry, 81(4), 358–367.PubMedCrossRefGoogle Scholar
  2. 2.
    Laberge, L., Gagnon, C., & Dauvilliers, Y. (2013). Daytime sleepiness and myotonic dystrophy. Current Neurology and Neuroscience Reports, 13(4), 340.PubMedCrossRefGoogle Scholar
  3. 3.
    Dufour, P., Berard, J., et al. (1997). Myotonic dystrophy and pregnancy. A report of two cases and a review of the literature. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 72(2), 159–164.PubMedCrossRefGoogle Scholar
  4. 4.
    Khan, Z. A., & Khan, S. A. (2009). Myotonic dystrophy and pregnancy. The Journal of the Pakistan Medical Association, 59(10), 717–719.Google Scholar
  5. 5.
    Rudnik-Schoneborn, S., Schneider-Gold, C., Raabe, U., Kress, W., Zerres, K., & Schoser, B. G. (2006). Outcome and effect of pregnancy in myotonic dystrophy type 2. Neurology, 66(4), 579–580.PubMedCrossRefGoogle Scholar
  6. 6.
    George, A., Schneider-Gold, C., Zier, S., Reiners, K., & Sommer, C. (2004). Musculoskeletal pain in patients with myotonic dystrophy type 2. Archives of Neurology, 61(12), 1938–1942.PubMedCrossRefGoogle Scholar
  7. 7.
    Ranum, L. P., & Day, J. W. (2002). Myotonic dystrophy: Clinical and molecular parallels between myotonic dystrophy type 1 and type 2. Current Neurology and Neuroscience Reports, 2(5), 465–470.PubMedCrossRefGoogle Scholar
  8. 8.
    Erikson, A., Forsberg, H., Drugge, U., & Holmgren, G. (1995). Outcome of pregnancy in women with myotonic dystrophy and analysis of CTG gene expansion. Acta Paediatrica, 84(4), 416–418.PubMedCrossRefGoogle Scholar
  9. 9.
    Steyaert, J., Umans, S., Willekens, D., Legius, E., Pijkels, E., de Die-Smulders, C., et al. (1997). A study of the cognitive and psychological profile in 16 children with congenital or juvenile myotonic dystrophy. Clinical Genetics, 52(3), 135–141.PubMedCrossRefGoogle Scholar
  10. 10.
    Douniol, M., Jacquette, A., Cohen, D., Bodeau, N., Rachidi, L., Angeard, N., et al. (2012). Psychiatric and cognitive phenotype of childhood myotonic dystrophy type 1. Developmental Medicine and Child Neurology, 54(10), 905–911.PubMedCrossRefGoogle Scholar
  11. 11.
    Wicklund, M. P. (2013). The muscular dystrophies. Continuum (Minneapolis Minnesota), 19(6 Muscle Disease), 1535–1570.Google Scholar
  12. 12.
    Hilbert, J. E., Ashizawa, T., Day, J. W., Luebbe, E. A., Martens, W. B., McDermott, M. P., et al. (2013). Diagnostic odyssey of patients with myotonic dystrophy. Journal of Neurology, 260(10), 2497–2504.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hamshere, M. G., Harley, H., et al. (1999). Myotonic dystrophy: The correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. Journal of Medical Genetics, 36(1), 59–61.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Martorell, L., Monckton, D. G., Gamez, J., & Baiget, M. (2000). Complex patterns of male germline instability and somatic mosaicism in myotonic dystrophy type 1. European Journal of Human Genetics, 8(6), 423–430.PubMedCrossRefGoogle Scholar
  15. 15.
    Martorell, L., Monckton, D. G., Sanchez, A., Lopez De Munain, A., & Baiget, M. (2001). Frequency and stability of the myotonic dystrophy type 1 premutation. Neurology, 56(3), 328–335.PubMedCrossRefGoogle Scholar
  16. 16.
    Zeesman, S., Carson, N., & Whelan, D. T. (2002). Paternal transmission of the congenital form of myotonic dystrophy type 1: A new case and review of the literature. American Journal of Medical Genetics, 107(3), 222–226.PubMedCrossRefGoogle Scholar
  17. 17.
    Tsilfidis, C., MacKenzie, A. E., Mettler, G., Barceló, J., & Korneluk, R. G. (1992). Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nature Genetics, 1(3), 192–195.PubMedCrossRefGoogle Scholar
  18. 18.
    Kamsteeg, E. J., Kress, W., Catalli, C., Hertz, J. M., Witsch-Baumgartner, M., Buckley, M. F., et al. (2012). Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. European Journal of Human Genetics, 20(12), 1203–1208.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Matthews, E., Fialho, D., Tan, S. V., Venance, S. L., Cannon, S. C., Sternberg, D., et al. (2010). The non-dystrophic myotonias: Molecular pathogenesis, diagnosis and treatment. Brain, 133(Pt 1), 9–22.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Trip, J., Drost, G., Ginjaar, H. B., Nieman, F. H., van der Kooi, A. J., de Visser, M., et al. (2009). Redefining the clinical phenotypes of non-dystrophic myotonic syndromes. Journal of Neurology, Neurosurgery, and Psychiatry, 80(6), 647–652.PubMedCrossRefGoogle Scholar
  21. 21.
    Jurkat-Rott, K., & Lehmann-Horn, F. (2010). State of the art in hereditary muscle channelopathies. Acta Myologica: Myopathies and Cardiomyopathies, 29(2), 343–350.Google Scholar
  22. 22.
    Dunø, M., Colding-Jørgensen, E., Grunnet, M., Jespersen, T., Vissing, J., & Schwartz, M. (2004). Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. European Journal of Human Genetics, 12(9), 738–743.PubMedCrossRefGoogle Scholar
  23. 23.
    Gurgel-Giannetti, J., Senkevics, A. S., Zilbersztajn-Gotlieb, D., Yamamoto, L. U., Muniz, V. P., Pavanello, R. C., et al. (2012). Thomsen or Becker myotonia? A novel autosomal recessive nonsense mutation in the CLCN1 gene associated with a mild phenotype. Muscle and Nerve, 45(2), 279–283.PubMedCrossRefGoogle Scholar
  24. 24.
    Cardani, R., Giagnacovo, M., Botta, A., Rinaldi, F., Morgante, A., Udd, B., et al. (2012). Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2. Journal of Neurology, 259(10), 2090–2099.PubMedCrossRefGoogle Scholar
  25. 25.
    Ursu, S. F., Alekov, A., Mao, N. H., & Jurkat-Rott, K. (2012). ClC1 chloride channel in myotonic dystrophy type 2 and ClC1 splicing in vitro. Acta Myologica: Myopathies and Cardiomyopathies, 31(2), 144–153.Google Scholar
  26. 26.
    Saleem, R., Setty, G., Khan, A., Farrell, D., & Hussain, N. (2013). Phenotypic heterogeneity in skeletal muscle sodium channelopathies: A case report and literature review. Journal of Pediatric Neurosciences, 8(2), 138–140.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Win, A. K., Perattur, P. G., Pulido, J. S., Pulido, C. M., & Lindor, N. M. (2012). Increased cancer risks in myotonic dystrophy. Mayo Clinical Proceedings, 87(2), 130–135.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Joline Dalton
    • 1
    Email author
  • Jill S. Goldman
    • 2
  • Jacinda B. Sampson
    • 3
  1. 1.Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of MinnesotaMinneapolisUSA
  2. 2.Taub InstituteColumbia University Medical CenterNew YorkUSA
  3. 3.Department of NeurologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations