Advances in In Silico Research on Nerve Agents

Chapter

Abstract

Nerve-agents (NAs) are toxic environment contaminants causing massive health hazard to the plant, animal, and civilian populations. Moreover, these materials have the properties of adsorption on various artificial surfaces which include cement, paints, metal oxides and clay minerals. These adsorption properties also threaten long-lasting toxic after-effects of NA exposure to the environment. Modeling these diverse NA-exposure characteristics through computational techniques has been always of great importance because of the restrictions in using such materials directly in the experiments due to their high toxicity. The present review discusses the recent advancements in the in silico research of NA, which include their conformational, biological and surface-occlusion properties. There are some positive sides of NA-adsorption also. The adsorption properties of NAs on oxide surfaces are used as binder to remove and subsequently deactivate them through chemical treatments. Moreover, NA adsorption on various surfaces is also useful to design materials to detect those agents using spectroscopic techniques. The present review also discusses the theoretical advancements in these directions in details. All of these discussions are mostly based on the results of the state of the art quantum-chemical computations. Related experimental results are also discussed to validate the results from such theoretical approaches.

References

  1. 1.
    Toy ADF, Walsh EN (1987) Phosphorus chemistry in everyday living, 2nd edn. ACS, Washington, DCGoogle Scholar
  2. 2.
    Kim K, Tasy OG, Atwood DA, Churchill DG (2011) Chem Rev 111:5345–5403Google Scholar
  3. 3.
    Malany S, Sawai M, Sikorski SR, Seravalli J, Quinn DM, Radić Z, Taylor P, Kronman C, Velan B, Shafferman A (2000) J Am Chem Soc 122:2981–2987Google Scholar
  4. 4.
    Sussman JL, Harel M, Frowlow F, Oefner C, Goodman A, Toker L, Silman I (1991) Science 253:872Google Scholar
  5. 5.
    Harel M, Quinn DM, Nair HK, Silman I, Sussman JL (1996) J Am Chem Soc 118:2340Google Scholar
  6. 6.
    Ariel N, Ordentlich A, Barak D, Bino T, Velan B, Shafferman A (1998) Biochem J 335:95Google Scholar
  7. 7.
    Gentry MK, Doctor BP (1991) In: Mossoulie J, Bacou F, Bernard E, Chattonet A, Doctor BP, Quinn DM (eds) Cholinesterases: structure, function, mechanism, genetics, and cell biology. American Chemical Society, Washington, DC, p 394Google Scholar
  8. 8.
    Taylor P, Lappi S (1975) Biochemistry 14:1989Google Scholar
  9. 9.
    Deakyne CA, Mout-Ner (Moutnet) M (1999) J Am Chem Soc 121:1546Google Scholar
  10. 10.
    Taylor P (2001) In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s the pharmaceutical basis of therapeutics, 10th edn. McGraw-Hill, New York, p 175Google Scholar
  11. 11.
    Benchop HP, Keijer JH (1966) Biochim Biophys Acta 128:586Google Scholar
  12. 12.
    Ordenlich A, Kronman C, Barak D, Stein D, Ariel N, Mercus D, Valen B, Shafferman A (1993) FEBS Lett 334:215Google Scholar
  13. 13.
    Hosea WA, Radić Z, Tsigelny I, Berman HA, Quinn DM, Taylor P (1996) Biochemistry 35:10995Google Scholar
  14. 14.
    Millard CB, Kryger G, Ordentlich A, Greenblatt HM, Harel M, Raves ML, Segall Y, Barak D, Shafferman A, Silman I, Sussman JL (1999) Biochemistry 38:7032Google Scholar
  15. 15.
    Nachon F, Asojo OA, Brogstahl GEO, Masson P, Lockridge O (2005) Biochemistry 44:1154Google Scholar
  16. 16.
    Ekström F, Akfur C, Tunemalm A-K, Lundberg S (2006) Biochemistry 45:74Google Scholar
  17. 17.
    Ordentlich A, Barak D, Kronmann C, Benschop HP, De Jong LPA, Ariel N, Barak R, Segall Y, Velan B, Shafferman A (1999) Biochemistry 38:3055Google Scholar
  18. 18.
    Jennings LL, Malecki M, Komives EA, Taylor P (2003) Biochemistry 42:11083Google Scholar
  19. 19.
    Hill CG, Li W-S, Thoden JB, Holden HM, Raushel FM (2003) J Am Chem Soc 125:8990Google Scholar
  20. 20.
    Michel HO, Hackley BE Jr, Berkowitz L, List G, Hackley EB, Gillian W, Pankau M (1967) Arch Biochem Biophys 121:29Google Scholar
  21. 21.
    Ordentlich A, Barak D, Kronmann C, Ariel N, Segall Y, Velan B, Shafferman A (1998) J Biol Chem 273:19509Google Scholar
  22. 22.
    Masson P, Fortier P-L, Albarte C, Froment M-T, Bartels CF, Lockridge O (1997) Biochem J 327:601Google Scholar
  23. 23.
    Ordentlich A, Barak D, Kronmann C, Ariel N, Segall Y, Velan B, Shafferman A (1996) J Biol Chem 271:11953Google Scholar
  24. 24.
    Segall Y, Waysbort D, Barak D, Ariel N, Doctor BP, Grunwald J, Ashani Y (1993) Biochemistry 32:13441Google Scholar
  25. 25.
    Bencsura A, Enyedy I, Kovach IM (1995) Biochemistry 34:8989Google Scholar
  26. 26.
    Majumdar D, Roszak S, Leszczynski J (2007) J Mol Phys 105:2551Google Scholar
  27. 27.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  28. 28.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  29. 29.
    Vosko SH, Wilk L, Nausair M (1980) Can J Phys 58:1200Google Scholar
  30. 30.
    Lee C, Wang W, Parr RG (1988) Phys Rev B 37:785Google Scholar
  31. 31.
    Vistoli G, Pedretti A, Testa L, Testa B (2002) J Am Chem Soc 124:7472Google Scholar
  32. 32.
    Møller C, Plesset M (1934) Phys Rev 46:618Google Scholar
  33. 33.
    Cothia C, Pauling P (1969) Nature (London) 223:919Google Scholar
  34. 34.
    Cothia C, Pauling P (1970) Proc Natl Acad Sci U S A 65:477Google Scholar
  35. 35.
    Svinning T, Sorum H (1975) Acta Crystallogr 31:1581Google Scholar
  36. 36.
    Jensen B (1975) Acta Chem Scand B 29:531Google Scholar
  37. 37.
    Jensen B (1982) Acta Crystallogr B 38:1982Google Scholar
  38. 38.
    Culvenor CCJ, Ham NS (1966) Chem Commun 15:537Google Scholar
  39. 39.
    Herdkoltz JK, Sass RL (1970) BioChem Biophys Res Commun 40:583Google Scholar
  40. 40.
    Walker ARH, Suenram RD, Samuels A, Jensen J, Ellzy MW, Lochner JM, Zeorka D (2001) J Mol Spectrosc 207:77Google Scholar
  41. 41.
    Suenram RD, DaBeu RS, Walker ARH, Lavrich RJ, Plusquellic DF, Ellzy MW, Lochner JM, Cash L, Jensen JO, Samules AC (2004) J Mol Spectrosc 224:176Google Scholar
  42. 42.
    Majumdar D, Roszak S, Leszczynski J (2006) J Phys Chem B 110:13597Google Scholar
  43. 43.
    Fleming CD, Edwards CC, Kirby SD, Maxwell DM, Potter PM, Cerasoli DM, Redinbo MR (2007) Biochemistry 46:5063Google Scholar
  44. 44.
    Sanson B, Nachon F, Colletier J-P, Froment M-T, Toker L, Greenblatt HM, Sussman JL, Ashani Y, Masson P, Silman I, Wiek M (2009) J Med Chem 52:7593Google Scholar
  45. 45.
    Paukku Y, Michalkova A, Majumdar D, Leszczynski J (2006) Chem Phys Lett 422:317Google Scholar
  46. 46.
    Haviv H, Wong DM, Greenblatt HM, Carlier PR, Pang Y-P, Silman I, Sussman JLJ (2005) Am Chem Soc 127:11029–11036Google Scholar
  47. 47.
    Wang J, Gu J, Leszczynski J (2005) J Phys Chem B 109:13761Google Scholar
  48. 48.
    Wang J, Gu J, Leszczynski J (2006) Chem Phys Lett 431:149Google Scholar
  49. 49.
    Wang J, Gu J, Leszczynski J (2006) Biomol Struct Dyn 24:139Google Scholar
  50. 50.
    Xu Y, Shen J, Luo X, Silman I, Sussman JL, Chen K, Jiang H (2003) J Am Chem Soc 125:11340Google Scholar
  51. 51.
    Wang J, Roszak S, Gu J, Leszczynski J (2005) J Phys Chem B 109:1006Google Scholar
  52. 52.
    Bennet AJ, Kovach IM, Schowen RL (1988) J Am Chem Soc 110:7892Google Scholar
  53. 53.
    Bencsura A, Enyedy IY, Kovach IM (1996) J Am Chem Soc 118:8531Google Scholar
  54. 54.
    Elhanany E, Ordentlich A, Dgany O, Kaplan D, Segall Y, Barak R, Velan B, Shafferman A (2001) Chem Res Toxicol 14:912Google Scholar
  55. 55.
    Wang J, Gu J, Leszczynski J (2008) J Phys Chem B 112:3485Google Scholar
  56. 56.
    Wang J, Gu J, Leszczynski J, Feliks M, Sokalski WA (2007) J Phys Chem B 111:2404Google Scholar
  57. 57.
    Wang J, Gu J, Leszczynski J (2006) J Phys Chem B 110:7567Google Scholar
  58. 58.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327Google Scholar
  59. 59.
    Stewart JJP (2007) J Mol Model 13:1173Google Scholar
  60. 60.
    Pellenq RJ-M, Kushimac A, Shahsavarib R, Van Vlietd KJ, Buehlerb MJ, Yi S, Ulmb F-J (2009) Proc Natl Acad Sci U S A 106:16102Google Scholar
  61. 61.
    Seymour RB, Kauffman GB (1992) J Chem Educ 69:909Google Scholar
  62. 62.
    Clayton AM (1987) Epoxy resins: chemistry and technology, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  63. 63.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215Google Scholar
  64. 64.
    Michalkova A, Leszczynski J (2009) In: Leszczynski J, Shukla M (eds) Practical aspects of computational chemistry: methods, concepts and applications. Springer, New York, p 277Google Scholar
  65. 65.
    Michalkova A, Gorb L, Ilchenko M, Zhikol OA, Shishkin OV, Leszczynski J (2004) J Phys Chem B 108:1918Google Scholar
  66. 66.
    Benco L, Tunega D, Hafner J, Lischka H (2001) Am Mineral 86:1057Google Scholar
  67. 67.
    Michalkova A, Martinez J, Zhikol OA, Gorb L, Shishkin OV, Leszczynska D, Leszczynski J (2006) J Phys Chem B 110:21175Google Scholar
  68. 68.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357Google Scholar
  69. 69.
    Yang Y-C, Baker JA, Ward JR (1992) Chem Rev 92:1729Google Scholar
  70. 70.
    Yang Y-C (1999) Acc Chem Res 32:109Google Scholar
  71. 71.
    Yang Y-C, Szafraniec LL, Beaudry WTJ (1993) Org Chem 58:6964Google Scholar
  72. 72.
    Koper O, Lucas E, Klabunde KJ (1999) J Appl Toxicol 19:S59Google Scholar
  73. 73.
    Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang DJ (1996) Phys Chem 100:12142Google Scholar
  74. 74.
    Stark JV, Park DG, Lagadic I, Klabunde KJ (1996) Chem Mater 8:1904Google Scholar
  75. 75.
    Lin S-T, Klabunde KJ (1985) Langmuir 1:600Google Scholar
  76. 76.
    Li Y-X, Koper OB, Atteya M, Klabunde KJ (1992) Chem Mater 4:323Google Scholar
  77. 77.
    Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ (2000) J Phys Chem B 104:5118Google Scholar
  78. 78.
    Wagner GW, Bartram PW, Koper OB, Klabunde KJ (1999) J Phys Chem B 103:3225Google Scholar
  79. 79.
    Michalkova A, Ilchenko M, Gorb L, Leszczynski J (2004) J Phys Chem B 108:5294Google Scholar
  80. 80.
    Michalkova A, Paukku Y, Majumdar D, Leszczynski J (2007) Chem Phys Lett 438:72Google Scholar
  81. 81.
    Paukku Y, Michalkova A, Leszczynski J (2008) Struct Chem 19:307Google Scholar
  82. 82.
    Kolodziejczyk W, Majumdar D, Roszak S, Leszczynski J (2007) Chem Phys Lett 450:138Google Scholar
  83. 83.
    Paukku Y, Michalkova A, Leszczynski J (2009) J Phys Chem C 113:1474Google Scholar
  84. 84.
    NRC recommendations for the disposal of chemical agents and munitions (1994) National Academy Press, Washington, DCGoogle Scholar
  85. 85.
    Groenewold GS (2010) Main Group Chem 9:221Google Scholar
  86. 86.
    U.S. Army’s Chemical Materials Agency, Richmond. http://www.cma.army.mil/bluegrass.aspx
  87. 87.
    Farquharson S, Inscore FE, Christesen S (2006) Top Appl Phys 103:447Google Scholar
  88. 88.
    Gustafson RL, Martell AE (1962) J Am Chem Soc 84:2309Google Scholar
  89. 89.
    Ward JR, Yang YC, Wilson RB Jr, Burrows WD, Ackerman LL (1988) Bioorg Chem 16:12Google Scholar
  90. 90.
    Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V (1999) Environ Health Perspect 107:933Google Scholar
  91. 91.
    Smith BM (2008) Chem Soc Rev 37:470Google Scholar
  92. 92.
    Holm FW (1998) NATO Sci Ser 1 22:159Google Scholar
  93. 93.
    Van Hooidonk C, Breebaart-Hansen JC, Recl AE (1970) Trav Chim Pays-Bas 89:289Google Scholar
  94. 94.
    Morales-Rojas H, Moss RA (2002) Chem Rev 102:2497Google Scholar
  95. 95.
    Ekerdt JG, Klabunde KJ, Shapley JR, White JM, Yates JT Jr (1988) J Phys Chem 92:6182Google Scholar
  96. 96.
    Wagner GW, Porcell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) J Am Chem Soc 123:1636Google Scholar
  97. 97.
    Gordon WO, Tissue BM, Morris JR (2007) J Phys Chem C 111:3233Google Scholar
  98. 98.
    Vaiss VS, Borges I Jr, Leitão AA (2011) J Phys Chem C 115:24937Google Scholar
  99. 99.
    Stewart JJP (1989) J Comput Chem 10:209Google Scholar
  100. 100.
    Stewart JJP (1989) J Comput Chem 10:221Google Scholar
  101. 101.
    Van Houten KA, Heath DC, Pilato RS (1998) J Am Chem Soc 120:12359Google Scholar
  102. 102.
    Sohn H, Létant S, Sailor MJ, Trogler WC (2000) J Am Chem Soc 122:5399Google Scholar
  103. 103.
    Zhang S-W, Swager TM (2003) J Am Chem Soc 125:3420Google Scholar
  104. 104.
    Mayers AB (1996) Chem Rev 96:911Google Scholar
  105. 105.
    Rousseau DL, Friedman JM, Williams PF (1979) In: Weber A (ed) Raman spectroscopy of gases and liquids, vol 11, Topics in current physics. Springer, Berlin, p 203Google Scholar
  106. 106.
    Majumdar D, Roszak S, Leszczynski J (2010) J Phys Chem A 114:4340Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA
  2. 2.Institute of Physical and Theoretical ChemistryWroclaw University of TechnologyWroclawPoland
  3. 3.Department of Chemistry and Biochemistry, Interdisciplinary Center for NanotoxicityJackson State UniversityJacksonUSA

Personalised recommendations