Laboratory astrophysics: Investigation of planetary and astrophysical maser emission

  • R. Bingham
  • D. C. Speirs
  • B. J. Kellett
  • I. Vorgul
  • S. L. McConville
  • R. A. Cairns
  • A. W. Cross
  • A. D. R. Phelps
  • K. Ronald
Part of the Space Sciences Series of ISSI book series (SSSI, volume 47)


This paper describes a model for cyclotron maser emission applicable to planetary auroral radio emission, the stars UV Ceti and CU Virginus, blazar jets and astrophysical shocks. These emissions may be attributed to energetic electrons moving into convergent magnetic fields that are typically found in association with dipole like planetary magnetospheres or shocks. It is found that magnetic compression leads to the formation of a velocity distribution having a horseshoe shape as a result of conservation of the electron magnetic moment. Under certain plasma conditions where the local electron plasma frequency ω pe is much less than the cyclotron frequency ω ce the distribution is found to be unstable to maser type radiation emission. We have established a laboratory-based facility that has verified many of the details of our original theoretical description and agrees well with numerical simulations. The experiment has demonstrated that the horseshoe distribution produces cyclotron emission at a frequency just below the local electron cyclotron frequency, with polarisation close to X-mode and propagating nearly perpendicularly to the electron beam motion. We discuss recent developments in the theory and simulation of the instability including addressing radiation escape problems, and relate these to the laboratory, space, and astrophysical observations. The experiments showed strong narrow band EM emissions at frequencies just below the cold-plasma cyclotron frequency as predicted by the theory. Measurements of the conversion efficiency, mode and spectral content were in close agreement with the predictions of numerical simulations undertaken using a particle-in-cell code and also with satellite observations confirming the horseshoe maser as an important emission mechanism in geophysical/astrophysical plasmas. In each case we address how the radiation can escape the plasma without suffering strong absorption at the second harmonic layer.


Auroral kilometric radiation Cyclotron maser radiation Plasma instabilities Blazar jets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S.K. Adelman et al., On the rotation of the chemically peculiar magnetic star 56 Arietis. Astron. Astrophys. 375, 982–988 (2001) ADSCrossRefGoogle Scholar
  2. M.C. Begelman, R.E. Ergun, M.J. Rees, Cyclotron maser emission from blazar jets? ApJ 625, 51–59 (2005) ADSCrossRefGoogle Scholar
  3. A.O. Benz et al., First VLBI images of a main-sequence star. Astron. Astrophys. 331, 596 (1998) ADSGoogle Scholar
  4. R. Bingham, R.A. Cairns, Generation of auroral kilometric radiation by electron horseshoe distributions. Phys. Plasmas 7, 3089–3092 (2000) ADSCrossRefGoogle Scholar
  5. R. Bingham, R.A. Cairns, B.J. Kellett, Coherent cyclotron maser radiation from UV Ceti. Astron. Astrophys. 370, 1000–1003 (2001) ADSCrossRefGoogle Scholar
  6. R. Bingham, B.J. Kellett, R.A. Cairns, J. Tonge, J.T. Mendonca, Cyclotron maser radiation from astrophysical shocks. Astrophysical Journal 595, 279–284 (2003) ADSCrossRefGoogle Scholar
  7. R. Bingham, B.J. Kellett, R.A. Cairns et al., Cyclotron maser radiation in space and laboratory plasmas. Contrib. Plasma Physics 44, 382–387 (2004) ADSCrossRefGoogle Scholar
  8. C.K. Birdsall, A.B. Langdon, Plasma Physics Via Computer Simulation (McGraw-Hill, New York, 1985) Google Scholar
  9. E.F. Borra, J.D. Landstreet, The magnetic fields of the Ap stars. ApJS 42, 421–445 (1980) ADSCrossRefGoogle Scholar
  10. R.A. Cairns et al., A cyclotron maser instability with application to space and laboratory plasmas. Phys. Scr. T 116, 23 (2005) ADSCrossRefGoogle Scholar
  11. R.A. Cairns et al., Cyclotron maser radiation from an inhomogeneous plasma. Phys. Rev. Lett. 101, 215003 (2008) ADSCrossRefGoogle Scholar
  12. K.R. Chu, The electron cyclotron maser. Rev. Mod. Phys. 76, 489–540 (2004) ADSCrossRefGoogle Scholar
  13. G.T. Delory et al., Fast observations of electron distributions within AKR source regions. Geophys. Res. Lett. 25, 2069–2072 (1998) ADSCrossRefGoogle Scholar
  14. G.G. Denisov et al., Gyrotron traveling wave amplifier with a helical interaction waveguide. Phys. Rev. Lett. 81, 5680–5683 (1998) ADSCrossRefGoogle Scholar
  15. R.E. Ergun et al., Electron-cyclotron maser driven by charged-particle acceleration from magnetic field-aligned electric fields. Astrophysical Journal 538, 456–466 (2000) ADSCrossRefGoogle Scholar
  16. K.M. Gillespie et al., 3D PiC code simulations for a laboratory experimental investigation of auroral kilometric radiation mechanisms. Plasma Phys. Controlled Fusion 50, 124038 (2008) ADSCrossRefGoogle Scholar
  17. D.A. Gurnett, The earth as a radio source: terrestrial kilometric radiation. J. Geophys. Res. 79, 4227 (1974) ADSCrossRefGoogle Scholar
  18. A.P. Hatzes, Doppler imaging of the silicon distribution on CU Vir: evidence for a decentred magnetic dipole? Mon. Not. R. Astron. Soc. 288, 153–160 (1997) ADSCrossRefGoogle Scholar
  19. D.S. Hillan, I.H. Cairns, P.A. Robinson, Type II solar radio bursts. 2. Detailed comparison of theory with observations. J. Geophys. Res. [Space Phys.] 115, A06105 (2012) ADSGoogle Scholar
  20. T. Katsouleas, J.M. Dawson, Unlimited electron acceleration in laser-driven plasma waves. Phys. Rev. Lett. 51, 392–395 (1983) ADSCrossRefGoogle Scholar
  21. B.J. Kellett et al., Can late-type active stars be explained by a dipole magnetic trap? Mon. Not. R. Astron. Soc. 329, 102–108 (2002) ADSCrossRefGoogle Scholar
  22. B.J. Kellett et al., CU Virginis—the first stellar pulsar. e-print (2007). astro-ph/0701214
  23. K.K. Lo et al., Observations and modelling of pulsed radio emission from CU Virginis. Mon. Not. R. Astron. Soc. 421, 3316–3324 (2012) ADSCrossRefGoogle Scholar
  24. P. Louarn, D. Le Queau, Generation of the auroral kilometric radiation in plasma cavities. II. The cyclotron maser instability in small size sources. Planet. Space Sci. 44, 211–224 (1996) ADSCrossRefGoogle Scholar
  25. P. Louarn et al., Trapped electrons as a free energy source for the auroral kilometric radiation. J. Geophys. Res. 95, 5983–5995 (1990) ADSCrossRefGoogle Scholar
  26. K.G. McClements et al., Lower hybrid resonance acceleration of electrons and ions in solar flares and the associated microwave emission. ApJ 409, 465–475 (1993) ADSCrossRefGoogle Scholar
  27. S.L. McConville et al., Demonstration of auroral radio emission mechanisms by laboratory experiment. Plasma Phys. Controlled Fusion 50, 074010 (2008) ADSCrossRefGoogle Scholar
  28. D.L. Meier et al., Magnetohydrodynamic production of relativistic jets. Science 291, 84–92 (2001) ADSCrossRefGoogle Scholar
  29. D.B. Melrose, Instabilities in Space and Laboratory Plasmas (Cambridge University Press, Cambridge, 1986), p. 202 CrossRefGoogle Scholar
  30. D.B. Melrose, Radiation from instabilities in space plasmas. Astrophys. Space Sci. 264, 401–410 (1998) ADSCrossRefGoogle Scholar
  31. D.B. Melrose, Coherent emission in astrophysics: a critique. Astrophys. Space Sci. 264, 391–400 (1999) ADSCrossRefGoogle Scholar
  32. D.B. Melrose, G.A. Dulk, Electron-cyclotron masers as the source of certain solar and stellar radio bursts. ApJ 259, 844–858 (1982) ADSCrossRefGoogle Scholar
  33. D. Menietti, J.L. Burch, “Electron conic” signatures observed in the nightside auroral zone and over the polar cap. J. Geophys. Res. 90, 5345 (1985) ADSCrossRefGoogle Scholar
  34. J.D. Menietti et al., Simultaneous radio and optical observations of auroral structures: implications for AKR beaming. J. Geophys. Res. 116, A12219 (2011) ADSCrossRefGoogle Scholar
  35. G.A. Mesyats, Vacuum discharge effects in the diodes of high-current electron accelerators. IEEE Trans. Plasma Sci. 19, 683–689 (1991) ADSCrossRefGoogle Scholar
  36. R.L. Mutel et al., Cluster multispacecraft determination of AKR angular beaming. Geophys. Res. Letters 35, L07104 (2008) ADSCrossRefGoogle Scholar
  37. R.S. Nemmen et al., A universal scaling for the energetics of relativistic jets from black hole systems. Science 338, 1445–1448 (2012) ADSCrossRefGoogle Scholar
  38. R.J. Noer, Electron field-emission from broad-area electrodes. Appl. Phys. A 28, 1–24 (1982) ADSCrossRefGoogle Scholar
  39. S.P. O’Sullivan, D.C. Gabuzda, Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets. Mon. Not. R. Astron. Soc. 400, 26–42 (2009) ADSCrossRefGoogle Scholar
  40. P.L. Pritchett, Electron-cyclotron maser instability in relativistic plasmas. Phys. Fluids 29, 2919–2930 (1986) ADSCrossRefGoogle Scholar
  41. P.L. Pritchett, R.J. Strangeway, A simulation study of kilometric radiation generation along an auroral field line. J. Geophys. Res. [Space Physics] 90, 9650–9662 (1985) ADSCrossRefGoogle Scholar
  42. P.L. Pritchett et al., Free energy sources and frequency bandwidth for the auroral kilometric radiation. J. Geophys. Res. 104, 10317–10326 (1999) ADSCrossRefGoogle Scholar
  43. P.L. Pritchett, R.J. Strangeway, R.E. Ergun, C.W. Carlson, Generation and propagation of cyclotron maser emissions in the finite auroral kilometric radiation source cavity. J. Geophys. Res. 107, 1437 (2002) CrossRefGoogle Scholar
  44. D.M. Pyper et al., An abrupt decrease in the rotational period of the chemically peculiar magnetic star CU Virginis. Astron. Astrophys. 339, 822–830 (1998) ADSGoogle Scholar
  45. K. Ronald et al., Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of auroral kilometric radiation. Phys. Plasmas 15, 056503 (2008a) ADSCrossRefGoogle Scholar
  46. K. Ronald et al., Electron beam measurements for a laboratory simulation of auroral kilometric radiation. Plasma Sources Sci. Technol. 17, 035011 (2008b) ADSCrossRefGoogle Scholar
  47. A. Roux et al., Auroral kilometric radiation sources: in situ and remote observations from Viking. J. Geophys. Res. 98, 11657–11670 (1993) ADSCrossRefGoogle Scholar
  48. D.C. Speirs et al., A laboratory experiment to investigate auroral kilometric radiation emission mechanisms. J. Plasma. Phys. 71, 665–674 (2005) ADSCrossRefGoogle Scholar
  49. D.C. Speirs et al., Numerical simulation of auroral cyclotron maser processes. Plasma Phys. Controlled Fusion 50, 074011 (2008) ADSCrossRefGoogle Scholar
  50. D.C. Speirs et al., Numerical investigation of auroral cyclotron maser processes. Phys. Plasmas 17, 056501 (2010) ADSCrossRefGoogle Scholar
  51. T.H. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992) Google Scholar
  52. R.J. Strangeway et al., FAST observations of VLF waves in the auroral zone: evidence of very low plasma densities. Geophys. Res. Lett. 25, 2065 (1998) ADSCrossRefGoogle Scholar
  53. V.L. Tarakanov, KARAT Code User Manual, Berkeley Research Associates Inc., VA, USA (1992) Google Scholar
  54. G. Thejappa et al., Evidence for the Oscillating Two Stream Instability and Spatial Collapse of Langmuir Waves in a Solar Type III Radio Burst (2012) Google Scholar
  55. R.A. Treumann, The electron–cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 13, 229–315 (2006) ADSCrossRefGoogle Scholar
  56. C. Trigilio, P. Leto, F. Leone, G. Umana, C. Buemi, Coherent radio emission from the magnetic chemically peculiar star CU Virginis. Astron. Astrophys. 362, 281–288 (2000) ADSGoogle Scholar
  57. R.Q. Twiss, Radiation transfer and the possibility of negative absorption in radio astronomy. Australian Journal of Physics 11, 564–579 (1958) ADSCrossRefGoogle Scholar
  58. S.S. Vogt, A magnetic study of spotted UV Ceti flair stars and related late-type dwarfs. ApJ 240, 567–584 (1980) ADSCrossRefGoogle Scholar
  59. I. Vorgul, R.A. Cairns, R. Bingham, Analysis of a cyclotron maser instability in cylindrical geometry. Phys. Plasmas 12, 122903 (2005) ADSCrossRefGoogle Scholar
  60. R.M. Winglee, P.L. Pritchett, The generation of low-frequency electrostatic waves in association with auroral kilometric radiation. J. Geophys. Res. 91, 13531–13541 (1986) ADSCrossRefGoogle Scholar
  61. C.S. Wu, L.C. Lee, A theory of the terrestrial kilometric radiation. ApJ. 230, 621–626 (1979) ADSCrossRefGoogle Scholar
  62. N.S. Xu, R.V. Latham, The application of an energy-selective imaging technique to a study of field-induced hot electrons from broad area high voltage electrodes. Surf. Sci. 274, 147–160 (1992) ADSCrossRefGoogle Scholar
  63. P. Zarka, The auroral radio emissions from planetary magnetospheres—what do we know, what don’t we know, what do we learn from them? Adv. Space Res. 12, 99–115 (1992) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. Bingham
    • 1
    • 2
  • D. C. Speirs
    • 2
  • B. J. Kellett
    • 1
  • I. Vorgul
    • 3
  • S. L. McConville
    • 2
  • R. A. Cairns
    • 3
  • A. W. Cross
    • 2
  • A. D. R. Phelps
    • 2
  • K. Ronald
    • 2
  1. 1.Central Laser FacilitySTFC Rutherford Appleton LaboratoryChiltonUK
  2. 2.Department of Physics, SUPAUniversity of StrathclydeGlasgowUK
  3. 3.School of Mathematics and StatisticsUniversity of St. AndrewsSt. AndrewsUK

Personalised recommendations