Structural Organization of Cingulate Cortex: Areas, Neurons, and Somatodendritic Transmitter Receptors

  • Brent A. Vogt


Although cingulate cortex is one of the largest components of the limbic system, it has remained an enigma to neuroscientists over the past century. This is because the structure of cingulate cortex undergoes complex transitions and many of its connections do not conform to the “rules” of neocortical organization. Moreover, it is difficult to access the medial surface of the cerebral cortex, and so cingulate cortex has remained largely silent in functional and neurological assessments. Its role in responses to noxious stimuli, movement, vocalization, motivation, and learning and memory only now is becoming apparent. Positron emission tomography studies of cerebral blood flow and metabolism are now exposing cingulate cortex to clinical assessments that were not previously feasible with electroencephalo-graphic techniques. These studies show important roles for cingulate cortex in attention and responses to painful stimuli, and they have confirmed in vitro findings of high opioid receptor binding.


Pyramidal Neuron Apical Dendrite Retrosplenial Cortex Cingulum Bundle Multipolar Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey WR, Meyer M (1952): An experimental study of hippocampal afferent pathways from prefrontal and cingulate areas in the monkey. J Anat 86:58–74Google Scholar
  2. Andersen P, Silfvenius H, Sundberg SH, Sveen O (1980): A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea-pig hippocampal slices in vitro. J. Physiol. (London) 307:273–299Google Scholar
  3. Azmitia EC, Segal M (1978): An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668Google Scholar
  4. Baleydier C, Mauguière F (1980): The duality of the cingulate gyrus in monkey: Neuroanatom-ical study and functional hypothesis. Brain 103:525–554Google Scholar
  5. Barker JL, Dufy B, Harrington JW, Harrison NL, MacDermott AB, MacDonald JF, Owen DG, Vicini S (1987): Signals transduced by gamma-aminobutyric acid in cultured central nervous system neurons and thyrotropin releasing hormone in clonal pituitary cells. Ann NY Acad Sci 494:1–38Google Scholar
  6. Berger TW, Milner TA, Swanson GW, Lynch GS, Thompson RF (1980): Reciprocal anatomical connections between anterior thalamus and cingulate-retrosplenial cortex in the rabbit. Brain Res 201:411–417Google Scholar
  7. Blümcke I, Hof PR, Morrison JH, Celio MR (1990): Distribution of parvalbumin immuno-reactivity in the visual cortex of Old World monkeys and humans. J Comp Neurol 301:417–432Google Scholar
  8. Bormann J (1988): Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neu-rosci 11:112–116Google Scholar
  9. Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M (1980): (—)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature (London) 283:92–94Google Scholar
  10. Braak H (1976): A primitive gigantocellular field buried in the depth of the cingulate sulcus of the human brain. Brain Res 109:219–233Google Scholar
  11. Braak H (1979a): Pigment architecture of the human telencephalic cortex. IV. Regio retro-splenialis. Cell Tissue Res 204:431–440Google Scholar
  12. Braak H (1979b): Pigment architecture of the human telencephalic cortex. V. Regio antero-genualis. Cell Tissue Res 204:441–451Google Scholar
  13. Brodmann K (1909): Vergleichende Lokalisa-tionslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: BarthGoogle Scholar
  14. Brun A, Englund E (1981): Regional pattern of degeneration in Alzheimer’s disease: Neuronal loss and histopathological grading. Histopa-thology 5:549–564Google Scholar
  15. Buckley NJ, Bonner TI, Brann MR (1988): Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci. 8:4646–4652Google Scholar
  16. Cauller LJ, Connors BW (1992): Functions of very distal dendrites: Experimental and computational studies of Layer I synapses on neocor-tical pyramidal cells. In: Single Neuron Computation, McKenna T, Davis J, Zornetzer SF, eds, New York: Academic Press, pp 199–229Google Scholar
  17. Chagnac-Amital Y, Luhmann HJ, Prince DA (1990): Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphological features. J Comp Neurol 296:598–613Google Scholar
  18. Chui HC, Teng EL, Henderson VW, Moy AC (1985): Clinical subtypes of dementia of the Alzheimer type. Neurology 35:1544–1550Google Scholar
  19. Connors BW, Gutnick MJ, Prince DA (1982): Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320Google Scholar
  20. Crino PB, Vogt BA, Volicer L, Wiley RG (1990): Cellular localization of serotonin 1A, IB and uptake sites in cingulate cortex of the rat. J Pharmacol Exp Ther 252:651–656Google Scholar
  21. Curcio CA, Kemper T (1984): Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal packing density. JNeuropathol Exp Neurol 43:359–368Google Scholar
  22. DeFelipe J, Jones EG (1988): Cajal on the Cerebral Cortex. New York: Oxford University PressGoogle Scholar
  23. Domesick VB (1970): The fasciculus cinguli in the rat. Brain Res 20:19–32Google Scholar
  24. Dum RP, Strick PL (1991): The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689Google Scholar
  25. Ehlert FJ, Kokka N, Fairhurst AS (1980): Altered [3H]quinuclidinyl benzilate binding in the striatum of rats following chronic Cholinesterase inhibition with diisopropylfluorophos-phate. Mol Pharmacol 17:24–30Google Scholar
  26. Fallon JH, Leslie FM (1986): Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249:293–336Google Scholar
  27. Feldman ML (1984): Morphology of the neocortical pyramidal neuron. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol 1, pp 123–200Google Scholar
  28. Feldman ML, Peters A (1974): A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res 77:55–76Google Scholar
  29. Fleischhauer K, Petsch H, Wittkowski W (1972): Vertical bundles of dendrites in the neocortex. Z Anat Entwicklungsgesch 136:213–223Google Scholar
  30. Flynn DD, Weinstein DA, Mash DC (1992): Loss of high affinity agonist binding to Ml receptors in Alzheimer’s disease: Implications for the failure of cholinergic replacement therapies. Ann Neurol 29:256–262Google Scholar
  31. Foltz EL, White LE (1962): Pain “relief by frontal cingulumotomy. J Neurosurg 19:89–100Google Scholar
  32. Foltz EL, White LE (1968): The role of rostral cingulumotomy in “pain” relief. Int J Neurol 6:353–373Google Scholar
  33. Frey KA, Zubieta JK (1991): Effects of DFP treatment of m3 receptors: An autoradiographic analysis. Neurosci Abstr 17:586Google Scholar
  34. Friedman WJ, Ernfors P, Persson H (1991): Transient and persistent expression of NT-3/HDNF mRNA in the rat brain during postnatal development. J Neurosci 11:1577–1584Google Scholar
  35. Fujita Y (1979): Evidence for the existence of inhibitory postsynaptic potentials in dendrites and their functional significance in hippo-campal pyramidal cells of adult rabbits. Brain Res 175:59–69Google Scholar
  36. Gabriel M, Foster K, Orona E (1980a): Interaction of laminae of the cingulate cortex with the anteroventral thalamus during behavioral learning. Science 298:1050–1052Google Scholar
  37. Gabriel M, Foster K, Orona E, Saltwick SE, Stanton M (1980b): Neuronal activity of cingulate cortex, anteroventral thalamus and hippo-campal formation in discriminative conditioning: Encoding and extraction of the significance of conditional stimuli. Prog Psy-chobiol Physiol Psychol 9:125–231Google Scholar
  38. Gabriel M, Vogt BA, Kubota Y, Poremba A, Kang E (1991): Training-stage related neuronal plasticity in limbic thalamus and cingulate cortex during learning: A possible key to mnemonic retrieval. Behav Brain Res, 46:175–185Google Scholar
  39. Goldman-Rakic PS, Selemon LD, Schwartz ML (1984): Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719–743Google Scholar
  40. Harkmark W, Mellgren Sl, Srebro B (1975): Acetylcholinesterase histochemistry of the septal region in rat and human: Distribution of enzyme activity. Brain Res 95:281–289Google Scholar
  41. Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989): Two classes of cortical GABA neurons defined by differential calcium binding protein immuno-reactivities. Exp Brain Res 76:467–472Google Scholar
  42. Herrmann C, Schulz E (1978): Quantitative Untersuchungen an Sternzellen im Bereich der cingulären Rinde der Ratte. J Hirnforsch 19:519–531Google Scholar
  43. Hotchkiss AJ, Gibb JW (1980): Long-term effects of multiple doses of methamphetamine and tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J Pharmacol Exp Ther 214:257–262Google Scholar
  44. Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1985): Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: A study of cholinergic neurons and synapses. J Comp Neurol 234:17–34Google Scholar
  45. Houser CR, Hendry SHC, Jones EG, Vaughn JE (1983): Morphological diversity of immunocy-tochemically identified GABA neurons in the monkey sensory-motor cortex. J Neurocytol 12:617–638Google Scholar
  46. Insausti R, Amaral DG, Cowan WM (1987): The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395Google Scholar
  47. Iwahori N, Mizuno N (1981a): A Golgi study on the neuronal organization of the interhemis-pheric cortex in the mouse. I. Projection neurons. Anat Embryol 161:465–481Google Scholar
  48. Iwahori N, Mizuno N (1981b): A Golgi study on the neuronal organization of the interhemi-spheric cortex in the mouse. II. Intrinsic neurons. Anat Embyol 161:483–498Google Scholar
  49. Jacobowitz DM, Winsky L (1991): Immunocytochemical localization of calretinin in the fore-brain of the rat. J Comp Neurol 304:198–218Google Scholar
  50. James WM, Klein WL (1988): Localization of acetylcholine receptors on isolated CNS neurons: Cellular and subcellular differentiation. J Neurosci 8:4225–4238Google Scholar
  51. Kalaria RN, Andorn AC, Tabaton M, White-house PJ, Harik SI, Unnerstall RJ (1989): Adrenergic receptors in aging and Alzheimer’s disease: Increased ß 2-receptors in prefrontal cortex and hippocampus. J Neurochem 53:1772–1781Google Scholar
  52. Krettek JE, Price JL (1977): The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192Google Scholar
  53. Krieg WJS (1946): Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas. J Comp Neurol 84:277–323Google Scholar
  54. Kromer Vogt LJ, Hyman BT, Van Hoesen GW, Damasio AR (1990): Pathological alterations in the amygdala in Alzheimer’s disease. Neuroscience 37:377–385Google Scholar
  55. Kuhar MJ, Pert CB, Snyder SH (1973): Regional distribution of opiate receptor binding in monkey and human brain. Nature (London) 245:447–450Google Scholar
  56. Leung LS (1978): Hippocampal CA1 region—demonstration of antidromic dendritic spike and dendritic inhibition. Brain Res 158:219–222Google Scholar
  57. Liles WC, Hunter DD, Meier KE, Nathanson NM (1986): Activation of protein kinase C induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells. J Biol Chem 261:5307–5313Google Scholar
  58. Liles WC, Nathanson NM (1987): Regulation of muscarinic acetylcholine receptor number in cultured neuronal cells by chronic membrane depolarization. J Neurosci 7:2556–2563Google Scholar
  59. Lorente de Nó R (1933): Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–438Google Scholar
  60. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987): Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464Google Scholar
  61. Marino R (1976): The anterior cerebral artery: I. Anatomo-radiological study of its cortical territories. Surg Neurol 5:81–87Google Scholar
  62. Masukawa LM, Prince DA (1984): Synaptic control of excitability in isolated dendrites of hip-pocampal neurons. J Neurosci 4:217–227Google Scholar
  63. Matelli M, Luppino G, Rizzolatti G (1991): Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462Google Scholar
  64. Maura G, Raiteri M (1986): Cholinergic terminals in rat hippocampus possess 5-HT1B receptors mediating inhibition of acetylcholine release. Eur J Pharmacol 129:333–337Google Scholar
  65. Mayeux R, Stern Y, Spanton S (1985): Heterogeneity in dementia of the Alzheimer type: Evidence of subtypes. Neurology 35:453–461Google Scholar
  66. McCabe RT, Gibb JW, Wamsley JK, Hanson GR (1987): Autoradiographic analysis of muscarinic cholinergic and serotonergic receptor alterations following methamphetamine treatment. Brain Res Bull 19:551–557Google Scholar
  67. McCormick DA, Prince DA (1985): Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc Natl Acad Sci USA 82:6344–6348Google Scholar
  68. McKinney M, Coyle JT (1982): Regulation of neocortical muscarinic receptors: Effects of drug treatment and lesions. J Neurosci 2:97–105Google Scholar
  69. McLean S, Rothman RB, Herkenham M (1986): Autoradiographic localization of mu and delta opiate receptors in the forebrain of the rat. Brain Res 378:49–60Google Scholar
  70. Meinecke DL, Peters A (1987): GABA immuno-reactive neurons in rat visual cortex. J Comp Neurol 261:388–404Google Scholar
  71. Morris AA, Peck CM (1955): Roentgenographic study of the variations in the normal anterior cerebral artery. Am J Roetgenol Radium Ther Nucl Med 74:818–826Google Scholar
  72. Mountcastle VB (1957): Modality and topographic properties of single neurons of cats somatic sensory cortex. J Neurophysiol 20:408–434Google Scholar
  73. Mountjoy CQ, Roth M, Evans NJR, Evans HM (1983): Cortical neuronal counts in normal elderly, controls and demented patients. Neu-robiol Aging 4:1–11Google Scholar
  74. Mugnaini E, Oertel WH (1985): An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immu-nohistochemistry. In: Handbook of Chemical Neuroanatomy, Björklund A, Hökfelt T, eds. Amsterdam: Elsevier, Vol 4, pp 436–608Google Scholar
  75. Musil SY, Olson CR (1988): Organization of cortical and subcortical projections to anterior cingulate cortex in the cat. J Comp Neurol 272:203–218Google Scholar
  76. Nauta WJH (1964): Some efferent connections of the prefrontal cortex in the monkey. In: The Frontal Granular Cortex and Behavior, Warren JM, Akert K, eds. New York: McGraw-Hill, pp 397–409Google Scholar
  77. Nelson DL, Herbert A, Bourgoin S, Glowinski J, Hanson M (1978): Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5, 7-dihydroxytryptamine administration in the rat. Mol Pharmacol 14:983–995Google Scholar
  78. Oderfeld-Nowak B, Siman SR, Chang L, Aprison MH (1980): Interactions of the cholinergic and serotonergic systems. Gen Pharmacol 11:37–45Google Scholar
  79. Offord S J, Ordway GA, Frazer A (1988): Application of [125I]iodocyanopindolol to measure 5-hydroxytrypatmine-1B receptors in the brain of the rat. J Pharmacol Exp Ther 244:144–153Google Scholar
  80. Olsen RW, Tobin AJ (1990): Molecular biology of GABAA receptors. FASEB J 4:1469–1480Google Scholar
  81. Ono M, Kubik S, Abernathey CD (1990): Atlas of the Cerebral Sulci. Stuttgart and New York: ThiemeGoogle Scholar
  82. Penney JB Jr, Pan HS, Young AB, Frey KA, Dauth GW (1981): Quantitative autoradiography of [3H]muscimol binding in rat brain. Science 214:1036–1038Google Scholar
  83. Perlmutter D, Rhoton AL (1976): Microsurgical anatomy of anterior cerebral-anterior communicating-recurrent artery complex. Surg Forum 27:464–465Google Scholar
  84. Perlmutter D, Rhoton AL (1978): Microsurgical anatomy of the distal anterior cerebral artery. J Neurosurg 49:204–228Google Scholar
  85. Peters A, Jones EG, eds (1984): Cerebral Cortex, Vol 1. New York: PlenumGoogle Scholar
  86. Peters A, Proskauer CC, Ribak CE (1982): Chandelier cells in rat visual cortex. J Comp Neurol 206:397–416Google Scholar
  87. Peters A, Regidor J (1981): A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. J Comp Neurol 203:685–716Google Scholar
  88. Price DL, Whitehouse PJ, Struble RG, Clark AW, Coyle JT, DeLong MR, Hedreen JC (1982): Basal forebrain cholinergic systems in Alzheimer’s disease and related dementias. Neurosci Comment 1:84–92Google Scholar
  89. Price GW, Blackburn TP, Hudson AL, Bowery NG (1984): Presynaptic GABAB sites in the interpeduncular nucleus. Neuropharmacology 23:861–862Google Scholar
  90. Ramon y Cajal S (1901–1902/1955): Studies of the Cerebral Cortex (Limbic Structures), Kraft LM, transi. Chicago: Lloyd-Luke, London/ Year BookGoogle Scholar
  91. Ramon y Cajal S (1911): Histologie du système nerveux de l’homme et des vertébrés, Vol II. Paris: MaloineGoogle Scholar
  92. Ramón y Cajal S (1922): Estrudios sobre la Fina Estructura de la Corteza Regional de los Roe-dores. I. Corteza suboccipital (Retrosplenial de Brodmann). Trab Lab Biol Univ Madrid 20:1–30Google Scholar
  93. Robertson RT, Kaitz SS (1981): Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol 195:501–525Google Scholar
  94. Rose JE, Woolsey CN (1948): Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J Comp Neurol 89:279–340Google Scholar
  95. Rose M (1927): Gyrus limbicus anterior und Regio retrosplenialis (Cortex holoprotoptychos quinquestratificatus) Vergleichende Architektonik bei Tier und mensch. J Psychol Neurol 43:65–173Google Scholar
  96. Rose M (1931): Cytoarchitektonischer Atlas der Grosshirnrinde des Kaninchens. J Psychol Neurol 43:353–440Google Scholar
  97. Russell RG, Carson VG, Booth RA, DJ Jenden DJ (1981): Mechanisms of tolerance to the anticholinesterase, DFP: Acetylcholine levels and dynamics in the rat brain. Neuropharmacology 20:1197–1201Google Scholar
  98. Sanides F (1970): Functional architecture of motor and sensory cortices in primates in the light of a new concept in neocortex evolution. In: The Primate Brain, Noback CR, Montagna W, eds. New York: Appleton-Century-Crofts, pp 137–208Google Scholar
  99. Sanides F, Sanides D (1972): The “extraverted neurons” of the mammalian cerebral cortex. Z Anat Entwicklungs gesch 136:272–293Google Scholar
  100. Sar M, Stumpf WE, Miller RJ, Chang K-J, Cuatrecasas P (1978): Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182:17–38Google Scholar
  101. Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, and Kukuew LA (1955): Atlas of the Cytoarchitectonics of the Human Cerebral Cortex. Medgiz, MoscowGoogle Scholar
  102. Schulz E, Schönheit B (1974); Neurohistologische Untersuchungen zur Neuronenstruktur der Regio limbica anterior der Ratte. J Hirnforsch 15:469–490Google Scholar
  103. Seltzer B, Sherwin I (1983): A comparison of clinical features in early and late onset primary degenerative dementia: One entity or two? Arch Neurol (Chicago) 40:143–146Google Scholar
  104. Siman RG, Klein WL (1979): Cholinergic activity regulates muscarinic receptors in central nervous system cultures. Proc Natl Acad Sci USA 76:4141–4145Google Scholar
  105. Siman RG, Klein WL (1981): Specificity of muscarinic acetylcholine receptor regulation by receptor activity. J Neurochem 37:1099–1108Google Scholar
  106. Smith GE (1897): The morphology of the indu-sium and striae Lancisii. Anat Anz 13:23–27Google Scholar
  107. Somogyi P (1977): A specific “axo-axonal” inter-neuron in the visual cortex of the rat. Brain Res 136:345–350Google Scholar
  108. Sripanidkulchai K, Sripanidkulchai B, Wyss JM (1984): The cortical projection of the basolat-eral amygdaloid nucleus in the rat: A retrograde fluorescent dye study. J Comp Neurol 229:419–431Google Scholar
  109. Sripanidkulchai K, Wyss JM (1987): The laminar organization of efferent neuronal cell bodies in the retrosplenial granular cortex. Brain Res 406:255–269Google Scholar
  110. Taylor JE, El-Fakanany E, Richelson E (1979): Long-term regulation of muscarinic acetylcholine receptors on cultured nerve cells. Life Sci 25:2181–2187Google Scholar
  111. Tomlinson BE, Irving D, Blessed G (1981): Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428Google Scholar
  112. Townes-Anderson E, Vogt BA (1989): Distribution of muscarinic acetylcholine receptors on processes of isolated retinal cells. J Comp Neurol 290:369–383Google Scholar
  113. Tribollet E, Charpak S, Schmidt A, Dubois-Dauphin M, Dreifuss JJ (1989): Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiol-ogy. J Neurosci 9:1764–1773Google Scholar
  114. Unnerstall JR, Kuhar MJ, Niehoff DL, Palacios JM (1981): Benzodiazepine receptors are coupled to a subpopulation of gamma-amino-butyric acid (GABA) receptors: Evidence from a quantitative autoradiographic study. J Pharmacol Exp Ther 218:797–804Google Scholar
  115. Valverde F (1965): Studies on the Piriform Lobe. Cambridge, MA: Harvard University PressGoogle Scholar
  116. Van Hoesen GW, Damasio AR (1987): Neural correlates of cognitive impairment in Alzheimer’s disease. In: Handbook of Physiology, Plum F, ed. New York: Waverly Press, Vol 5, pp 871–898Google Scholar
  117. Vogt BA (1976): Retrosplenial cortex in the rhesus monkey: A cytoarchitectonic and Golgi study. J Comp Neurol 169:63–98Google Scholar
  118. Vogt BA (1985): Cingulate cortex. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, pp 89–149Google Scholar
  119. Vogt BA (1991): The role of layer I in cortical function. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol 9, pp 49–80Google Scholar
  120. Vogt BA, Burns DL (1988): Experimental localization of muscarinic receptor subtypes to cingulate cortical Afferents and neurons. J Neurosci 8:643–652Google Scholar
  121. Vogt BA, Crino PB, Jensen EL (1992): Multiple heteroreceptors on limbic thalamic axons: M2 acetylcholine, serotonin1B, beta2 adrenoceptors, mu opioid, neurotensin. Synapse 10:44–53Google Scholar
  122. Vogt BA, Crino PB, Volker L (1991a): Laminar alterations in gamma-aminobutyric acidA, muscarinic and beta adrenoceptors and neuron degeneration in cingulate cortex in Alzheimer’s disease. J Neurochem 57:282–290Google Scholar
  123. Vogt BA, Gabriel M, Vogt LJ, Poremba A, Jensen EL, Kubota Y, Kang E (1991b): Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning. J Neurosci 11:1508–1514Google Scholar
  124. Vogt BA, Gorman LF (1982): Responses of cortical neurons to stimulation of corpus callosum in vitro. J Neurophysiol 48:1257–1273Google Scholar
  125. Vogt BA, Hedberg TG (1988): Autoradiographic localization of muscimol and baclofen binding sites in rodent cingulate cortex. Exp Brain Res 71:208–214Google Scholar
  126. Vogt BA, Jensen EL, Wiley RG (1993): Localization of opioid receptors to the somatodendritic region of cortical projection neurons with the immunotoxin OX7-saporin. In preparationGoogle Scholar
  127. Vogt BA, Miller MW (1983): Cortical connections between rat cingulate cortex and visual, motor and postsubicular cortices. J Comp Neurol 216:192–210Google Scholar
  128. Vogt BA, Pandya DN, Rosene DL (1987a): Cingulate cortex of the rhesus monkey: I. Cy-toarchitecture and thalamic afferents. J Comp Neurol 262:256–270Google Scholar
  129. Vogt BA, Peters A (1981): Form and distribution of neurons in rat cingulate cortex: Areas 32, 24 and 29. J Comp Neurol 195:603–625, 200:461 (erratum)Google Scholar
  130. Vogt BA, Plager MD, Crino PB, Bird ED (1990a): Laminar distributions of muscarinic acetylcholine, serotonin, GAB A and opioid receptors in human posterior cingulate cortex. Neuroscience 36:165–174Google Scholar
  131. Vogt BA, Rosene DL, Peters A (1981): Synaptic termination of thalamic and callosal Afferents in cingulate cortex of the rat. J Comp Neurol 201:265–283Google Scholar
  132. Vogt BA, Sikes RW, Swadlow HA, Weyand TG (1986): Rabbit cingulate cortex: Cytoarchitec-ture, physiological border with visual cortex, and afferent cortical connections of visual, motor, postsubicular and intracingulate origin. J Comp Neurol 248:74–94Google Scholar
  133. Vogt BA, Townes-Anderson E, Burns DL (1987b): Dissociated cingulate cortical neurons: Morphology and muscarinic acetylcholine receptor binding properties. J Neurosci 7:959–971Google Scholar
  134. Vogt BA, Van Hoesen GW, Vogt LJ (1990b): Laminar distribution of neuron degeneration in posterior cingulate cortex in Alzheimer’s disease. Acta Neuropathol 80:581–589Google Scholar
  135. von Economo C (1929): The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford University PressGoogle Scholar
  136. Waddington MM (1984): Atlas of Human Intracranial Anatomy. Rutland, VT: Academy BooksGoogle Scholar
  137. Wiesendanger R, Wiesendanger M (1982a): The corticopontine system in the rat. I. Mapping of corticopontine neurons. J Comp Neurol 208:215–226Google Scholar
  138. Wiesendanger R, Wiesendanger M (1982b): The corticopontine system in the rat. II. The projection pattern. J Comp Neurol 208:227–238Google Scholar
  139. Wiley RG, Stirpe F, Thorpe PE, Oeltmann TN (1989): Neuronotoxic effects of a monoclonal anti-Thy 1.1 antibody (OX7) coupled to the ribosome inactivating protein, saporin, as studied by suicide transport experiments in the rat. Brain Res 505:44–54Google Scholar
  140. Wong RKS, Watkins DJ (1982): Cellular factors influencing GABA response in hippocampal pyramidal cells. J Neurophysiol 48:938–951Google Scholar
  141. Wyss JM, Sripanidkulchai K (1983): The indu-sium griseum and anterior hippocampal continuation in the rat. J Comp Neurol 219:251–272Google Scholar
  142. Wyss JM, van Groen T, Sripanidkulchai K (1990): Dendritic bundling in layer I of granular retrosplenial cortex: Intracellular labeling and selectivity of innervation. J Comp Neurol 295:33–42Google Scholar
  143. Young WS III, Kuhar MJ (1981): Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Res 206:273–285Google Scholar
  144. Zeal AA, Rhoton AL (1978): Microsurgical anatomy of the posterior cerebral artery. J Neurosurg 48:534–559Google Scholar
  145. Zilles K, Wree A (1985): Cortex: Areal and laminar structure. In: The Rat Nervous System, Paxinos G, ed. New York: New York: Academic Press, Vol 1, pp 375–415Google Scholar
  146. Zilles K, Zilles B, Schleicher A (1980): A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. Anat Embryol 159:335–360Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Brent A. Vogt

There are no affiliations available

Personalised recommendations