Memory and the Microinvertebrates

  • Philip B. Applewhite
  • Harold J. Morowitz

Abstract

The choice of an experimental organism in biology often determines what experiments can be performed, and thus may set limits on the physical level at which information can be gained. If the human brain with its 1010 neurons were chosen as the experimental object, the specification of all the neuronal interconnections would be too difficult and information about it at this level could not be obtained. Electron microscopy of the rat’s brain has been done, but an electron microscopic mapping of the entire rat’s brain is not feasible. Also, it is not convenient to use the smallest metazoan (50 μ) to study the gross chemical composition of a brain, nor is it convenient to insert electrodes in the smallest protozoan (5 μ). This is to say the experimental level one is working at eliminates certain organisms because of size restraints.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applewhite, P. B., and H. J. Morowitz, The micrometazoa as model systems for studying the physiology of memory. Yale J. Biol. Med., 1966, 39, 90.PubMedGoogle Scholar
  2. Ashby, W. R., An Introduction to Cybernetics. London: Chapman and Hall, Ltd., 1958.Google Scholar
  3. Birky, C. W., Jr., and Bonnie Field, Nuclear number in the rotifer Asplanchna: intraclonal variation and environmental control. Science, 1966, 151, 585.PubMedCrossRefGoogle Scholar
  4. Boloukhere-Presburg, M., Effet de l’actinomycine D sur l’ultrastructure des chloroplastes et du noyau d’Acetabularia méditerranéa. J. Microscopie, 1965, 4, 363.Google Scholar
  5. Bullock, T. H., and G. A. Horridge, Structure and Function in the Nervous Systems of Invertebrates. San Francisco, Calif.: W. H. Freeman, 1965.Google Scholar
  6. Carthy, J. D., An Introduction to the Behavior of Invertebrates. London: George Allen and Unwin, Ltd., 1958.Google Scholar
  7. Carthy, J. D., The Behavior of Arthropods. San Francisco, Calif.: W. H. Freeman, 1965.Google Scholar
  8. Eakin, R., and J. Westfall, Ultrastructure of the eye of the rotifer Asplanchna brightwelli. J. Ultrastructure Res., 1965, 12, 46.CrossRefGoogle Scholar
  9. Eigen, M., and L. C. M. De Maeyer, Information storage and processing in biomolecular systems. Neurosci. Res. Program Bull., 1965, 3(3).Google Scholar
  10. Fahrenbach, W. H., The sarcoplasmic reticulum of striated muscle of a cyclopoid copepod. J. Cell Biol., 1963, 17, 629.PubMedCrossRefGoogle Scholar
  11. Hyman, L. S., The Invertebrates, Vols. 1–5. New York: McGraw-Hill Book Company, 1940–1959.Google Scholar
  12. Jennings, H. S., Behavior of the Lower Organisms. Bloomington, Ind.: Indiana University Press, 1962 (reissue).Google Scholar
  13. Koehler, J., A fine structure study of the rotifer integument. J. Ultrastructure Res., 1965, 12, 113.CrossRefGoogle Scholar
  14. Kudo, R. R., Protozoology. Springfield, Ill.: Charles C. Thomas, Publisher, 1966.Google Scholar
  15. Lansing, A., and F. Lamy, Fine structure of the cilia of rotifers. J. Cell Biol., 1961, 9, 799.CrossRefGoogle Scholar
  16. Mattem, C. F. T., and W. A. Daniel, The flame cell of rotifer. J. Cell. Biol., 1966a, 29, 552.CrossRefGoogle Scholar
  17. Mattern, C. F. T., and W. A. Daniel, The stomach cell of rotifer. J. Cell Biol., 1966b, 29, 547.PubMedCrossRefGoogle Scholar
  18. McConnell, J. V., Learning in invertebrates. Ann. Rev. Physiol., 1966, 28, 107.CrossRefGoogle Scholar
  19. McGaugh, J. L., and L. F. Petrinovich, Effects of drugs on learning and memory, in C. C. Pfeiffer and J. R. Smythies, eds., International Review of Neurobiology, 1965, 8, 139.Google Scholar
  20. Morrell, F., Electrophysiological contributions to the neural basis of learning. Physiolog. Rev., 1961, 41, 443.Google Scholar
  21. Pitelka, D. R., Electron Microscopic Structure of Protozoa, New York: The Macmillan Company, 1963.Google Scholar
  22. Schone, H., Complex behavior, in T. H. Waterman, ed., The Physiology of Crustacea, Vol. 2. New York: Academic Press, Inc., 1961.Google Scholar
  23. Soest, H., Dressurversuche mit rhabdocoelen turbellarien. Z. Vergleichende Physiol., 1937, 24, 720.CrossRefGoogle Scholar
  24. Thorpe, W. H., Learning and Instinct in Animals. London: Methuen & Co., 1963.Google Scholar
  25. Warden, C. J., T. N. Jenkins, and L. H. Warner, Comparative Psychology, Vol. 2. New York: The Ronald Press Company, 1940.Google Scholar
  26. Watson, J. D., Molecular Biology of the Gene. New York: W. A. Benjamin, Inc., 1965.Google Scholar
  27. Williams, R. J., Biochemical Individuality. New York: John Wiley and Sons, Inc., 1963.Google Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • Philip B. Applewhite
    • 1
  • Harold J. Morowitz
    • 1
  1. 1.Department of Molecular BiophysicsYale UniversityNew HavenUSA

Personalised recommendations