Advertisement

Measures of Dental Variation as Indicators of Multiple Taxa in Samples of Sympatric Cercopithecus Species

  • Dana A. Cope
Part of the Advances in Primatology book series (AIPR)

Abstract

Recognition of species in the fossil record is a critical issue for students of primate evolution. Since dental remains provide the largest samples for assessing intra- and interspecific variation, dental variation in fossil mammals is frequently compared with data for recent related species when investigating systematic diversity (Gingerich, 1974, 1979; Gingerich and Shoeninger, 1979; Kay, 1982a,b; Kay and Simons, 1983; Kelley, 1986; Kimbel and White, 1988; Martin and Andrews, 1984; Simpson, 1941a, and many others). The coefficient of variation (CV) has been the most frequently used statistic in a majority of these studies.

Keywords

Sympatric Species Posterior Tooth Fossil Sample Dental Dimension Reference Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cope, D. A. 1988. Dental variation in three sympatric species of Cercopithecus. (abstract) Am. J. Phys. Anthropol. 75:198–199.Google Scholar
  2. Cope, D. A. 1989. Systematic Variation in Cercopithecus Dental Samples. Ph.D. Thesis, University of Texas, Austin.Google Scholar
  3. Cope, D. A., and Lacy, M. G. 1992. Falsification of a single species hypothesis using the coefficient of variation: A simulation approach. Am. J. Phys Anthropol. 89:359–378.PubMedCrossRefGoogle Scholar
  4. Gautier-Hion, A. 1980. Seasonal variations of diet related to species and sex in a community of Cercopithecus monkeys. J. Amm. Ecol. 49:237–269.CrossRefGoogle Scholar
  5. Gautier-Hion, A., Bourlière, F., Gautier, J.-P-, and Kingdon, J. (eds.) 1988. A Primate Radiation: Evolutionary Biology of the African guenons. Cambridge University Press, Cambridge.Google Scholar
  6. Gingerich, P. D. 1974. Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. J . Paleont. 48:895–903.Google Scholar
  7. Gingerich, P. D. 1979. Paleontology, phylogeny and classification: an example from the mammalian fossil record. Syst. Zool. 28:451–464.CrossRefGoogle Scholar
  8. Gingerich, P. D., and Shoeninger, M. J. 1979. Patterns of tooth size variability in the dentition of primates. Am. J. Phys. Anthropol. 51:457–466.PubMedCrossRefGoogle Scholar
  9. Gingerich, P. D., and Winkler, D. A. 1979. Patterns of variation and correlation in the dentition of the red fox, Vulpes vulpes J. Mammal 60:691–704.CrossRefGoogle Scholar
  10. Greenfield, L. O. 1979. On the adaptive pattern of “Ramapithecus.” Am. J Phys. Anthropol 50:527–548.PubMedCrossRefGoogle Scholar
  11. Kay, R. F. 1982a. Sivapithecus simonsi, a new species of miocène hominoid, with comments on the phylogenetic status of the ramapithecinae. Int. J. Pnmatol. 3:113–173.Google Scholar
  12. Kay, R. F. 1982b. Sexual dimorphism in ramapithecinae. Proc. Natl. Acad. Sci. USA 79:209–212.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kay, R. F., and Simons, E. L. 1983. A reassessment of the relationship between later Miocene and subsequent Hominoidea, in: R. L. Chiochon and R. S. Courrucini (eds.), New Interpretations of Ape and Human Ancestry, pp. 577–623. Academic Press, New York.CrossRefGoogle Scholar
  14. Kelley, J. 1986. Species recognition and sexual dimorphism in Proconsul and Rangwapithecus. J. Hum. Evol. 15:461–495.CrossRefGoogle Scholar
  15. Kimbel, W. H., and White, T. D. 1988. Variation, sexual dimorphism and the taxonomy of Australopithecus, in: F. E. Grine (ed.), Evolutionary History of the “Robust” Australopithecines, pp. 175–192. Aldine de Gruyter, New York.Google Scholar
  16. Martin, L. B. 1983. The Relationships of the Later Miocene Hominoids. Ph.D. Thesis, University of London.Google Scholar
  17. Martin, L. B., and Andrews, P. 1984. The phyletic position of Graecopithecus freybergi Koenigswald. Cour. Forsch. Inst. Senckenberg 69:25–40.Google Scholar
  18. Plavcan, J. M. 1989. The coefficient of variation as an indicator of interspecific variability in fossil assemblages (abstract). Am. J. Phys. Anthropol 78:285.Google Scholar
  19. Simpson, G. G. 1941a. The species of Hoplophoneus. Am. Mus. Novitates. 1123:1–21.Google Scholar
  20. Simpson, G. G. 1941b. Range as a zoological character. Am. J. Sci. 239:785–804.CrossRefGoogle Scholar
  21. Simpson, G. G. 1947. Note on the measurement of variability and on relative variability of teeth of fossil mammals. Am. J. Sci. 245:522–525.PubMedCrossRefGoogle Scholar
  22. Simpson, G. G., Roe, A., and Lewontin, R. C. 1960. Quantitative Zoology Harcourt, Brace and Co., New York.Google Scholar
  23. Sokal, R. R., and Braumann, C. A. 1980. Significance tests for coefficients of variation and variability profiles. Syst. Zool. 34:449–456.Google Scholar
  24. Sokal, R. R., and Rohlf, F.J. 1981. Biometry. W. H. Freeman and Co., San Francisco.Google Scholar
  25. Tattersall, I. 1986. Species recognition in human paleontology. J Hum. Evol. 15:165–175.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Dana A. Cope
    • 1
  1. 1.Department of Sociology and AnthropologyCollege of CharlestonCharlestonUSA

Personalised recommendations