Advertisement

The Design of a Knowledge-Based System for Crystal Structure Determination

  • Suzanne Fortier
  • Janice Glasgow
  • Frank H. Allen
Part of the NATO ASI Series book series (NSSB, volume 274)

Abstract

The determination of crystal structures from their diffraction data belongs to the general class of image reconstruction exercises from incomplete and/or noisy data. In the crystallographic example, recovery of a three-dimensional image requires knowledge of both the amplitude and the phase of the diffracted rays. Since it is not usually possible to measure the phases experimentally, this exercise is not straightforward. Rather it involves the retrieval of some phase information from either additional isomorphous data sets, partial structure information or, in a direct method approach, from the amplitude data themselves through the application of probability theory. In the simplest cases, the process of image recovery is one of image processing. In more complex cases and, in particular in the case of macromolecular crystal structures, pattern recognition is an important component of the image reconstruction exercise. Chemical and structural rules are used to guide the iterative structure determination process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F.H., Doyle, M.J. and Taylor, R. (1990) Acta Cryst., B46, in press.Google Scholar
  2. Blundell, T.L., Sibanda, B.L., Sternberg, M.J.E. and Thornton, J.M. (1987) Nature, 326, 347.CrossRefGoogle Scholar
  3. Bricogne, G. (1988) Acta Cryst., A44, 517.CrossRefGoogle Scholar
  4. Dolata, D.P., Leach, A.R. and Prout, K. (1987) J. Computer-Aided Mol. Design, 1, 73.CrossRefGoogle Scholar
  5. Etter, M.C., MacDonald, J.C. and Bernstein, J. (1990) Acta Cryst., B46, 256.CrossRefGoogle Scholar
  6. Fortier, S. and Nigam, G.D. (1989) Acta Cryst., A45, 247.CrossRefGoogle Scholar
  7. Glasgow, J. (1990) IEEE Trans. Patt. Anal. Mach. Intell., submitted.Google Scholar
  8. Jenkins, M.A., Glasgow, J.I. and McCrosky, C. (1986) IEEE Software, Vol. 3, No. 1, 46.CrossRefGoogle Scholar
  9. Marr, D. and Nishihara, H.K. (1977) Proc. Roy. Soc. Lond., B.200, 269.CrossRefGoogle Scholar
  10. Moore, T. (1981) In Structures and Operations in Engineering & Management Systems, O. Bjorke and O. Fanksen, eds., Raper Publishers, Trondheim, Norway.Google Scholar
  11. Nyburg, S.C. and Faerman, C.H. (1985) Acta Cryst., B41, 274.CrossRefGoogle Scholar
  12. Rowland, R.S., Allen F.H., Carson, W.M. and Bugg, CE. (1990) In Crystallographic Applications in Molecular Modelling, S.E. Ealick and C.E. Bugg, eds., Springer Verlag, New York, in press.Google Scholar
  13. Taylor, R. and Kennard, O. (1984) Ace. Chem. Res., 17, 320.CrossRefGoogle Scholar
  14. Wippke, W.T. and Hahn, M.A. (1988) Tetrahedron Computer Methodology, 1, 141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Suzanne Fortier
    • 1
  • Janice Glasgow
    • 2
  • Frank H. Allen
    • 3
  1. 1.Dept. of ChemistryQueen’s UniversityKingstonCanada
  2. 2.Dept. of Computing and Information ScienceQueen’s UniversityKingstonCanada
  3. 3.Cambridge Crystallographic Data CentreUniversity Chemical LaboratoryCambridgeEngland

Personalised recommendations