Vision in Fishes: Ecological Adaptations

  • J. N. Lythgoe
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 35)


The vertebrate eye is one of the most conservative of organs. At a casual glance a Coelacanth eye is not so very different from our own, and even a lamprey eye is recognisably the same organ as our own. The underwater light climate may scatter more light, may be more monochromatic and be darker in the daytime, but the basic laws of optics are the same underwater as on land. The most obvious adaptations that fishes show are to the dim light at depth, the monochromatic nature of the underwater light and the more directional distribution of the spacelight.


Spectral Radiance Ecological Adaptation Flicker Fusion Frequency Underwater Light Climate Pupil Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlbert, I. (1975). Organization of the cone cells in the retinae of some teleosts in relation to their feeding habits. Univ. of Stockholm. Thesis.Google Scholar
  2. Ali, M.A. and Anctil, M. (1976). Retinas of Fishes: An Atlas. Heidelberg, Springer-Verlag, 284 p.CrossRefGoogle Scholar
  3. Ali, M.A. and Wagner, H.-J. (1974). Visual pigments: phylogeny and ecology. In: Vision in Fishes. Ed. M.A. Ali. N.Y. Plenum, p. 481–516.Google Scholar
  4. Barlow, H.B. (1957). Purkinje shift and retinal noise. Nature (Lond.) 179: 255–256.CrossRefGoogle Scholar
  5. Campbell, F.W. and Green, D.G. (1965). Monocular versus binocular visual acuity. Nature (Lond.) 208: 191–192.CrossRefGoogle Scholar
  6. Clarke, G.L. and Denton, E.J. (1962). Light and animal life. In: The Sea, Vol. I. Ed. M.N. Hill.N.Y., London J. Wiley & Sons, p. 456–468.Google Scholar
  7. Dartnall, H.J.A. (1975). Assessing the fitness of visual pigments for their photic environment. In: Vision in Fishes. Ed. M.A. Ali. N.Y., Plenum Press, p. 543–563.CrossRefGoogle Scholar
  8. Denton, E.J. (1956). Recherches sur l’absorption de la lumière par le cristallin des poissons. Bull. Inst. Oceanog., Monaco 1071: 1–10.Google Scholar
  9. Duntley, S.Q. (1960). Improved nomographs for calculating visibility by swimmers (natural lights). Bureau of Ships Contract No. bs-72039, Rep. 5–3 Feb.Google Scholar
  10. Fernandez, H.R.C. (1979). Visual pigments of bioluminescent and nonbioluminescent deep-sea fishes. Vision Res. 19: 589–592.CrossRefGoogle Scholar
  11. Herring, P.J. (1977). Bioluminescence of marine organisms. Nature (Lond.) 267: 788–793.CrossRefGoogle Scholar
  12. Jerlov, N.G. (1951). Optical studies of ocean water. Rep. Swedish Deep Sea Exped. 3: 1–59.Google Scholar
  13. Jerlov, N.G. (1968). Optical Oceanography. Amsterdan, Elsevier.Google Scholar
  14. Jerlov, N.G. (1976). Marine Optics. Amsterdam, Elsevier.Google Scholar
  15. Kalle, K. (1938). Zum Problem der Meereswasserfarbe. Ann. Hydrol. Marine Mitt. 66: 1–13.Google Scholar
  16. Kalle, K. (1966). The problem of Gelbstoffe in the sea. Oceanog. Marine Biol. Ann. Rev. 4: 91–104.Google Scholar
  17. Kirschfeld, K. (1974). The absolute sensitivity of lens and compound eyes. Z. Naturfosch. 29c: 592–596.Google Scholar
  18. Kirschfeld, K. (1976). The resolution of lens and compound eyes. In: Neural Principles of Vision. Eds. F. Zettler and R. Weiler. Berlin, Springer-Verlag, p. 354–369.CrossRefGoogle Scholar
  19. Locket, N.A. (1977). Adaptations to the deep-sea environment, in Handbook of Sensory Physiology, Vol. VII 5. Ed. F. Crescitelli. Berlin, Springer-Verlag, p. 67–192.Google Scholar
  20. Loew, E.R. and Lythgoe, J.N. (1978). The ecology of cone pigments in teleost fishes. Vision Res. 18: 715–722.CrossRefGoogle Scholar
  21. Lythgoe, J.N. (1968). Visual pigments and visual range underwater. Vision Res. 8: 997–1012.CrossRefGoogle Scholar
  22. Lythgoe, J.N. (1971). Underwater Vision. In: Underwater Science. Eds. J.D. Woods and J.N. Lythgoe. Oxford University Press, p. 103–139.Google Scholar
  23. Lythgoe, J.N. (1972a). The adaptation of visual pigments to their photic environment. In: Handbook of Sensory Physiology, Vol. 7/1. Ed. H.J.A. Dartnall. Berlin, Springer-Verlag, p. 566–603.Google Scholar
  24. Lythgoe, J.N. (1972b). List of vertebrate visual pigments. In: Handbook of Sensory Physiology, Vol. VII/1. Ed. H.J.A. Dartnall. Berlin, Springer-Verlag, p. 604–624.Google Scholar
  25. Lythgoe, J.N. (1974a). The structure and physiology of irridescent corneas in fishes. In: Vision in Fishes. Ed. M.A. Ali. N.Y., Plenum Press, p. 253–262.Google Scholar
  26. Lythgoe, J.N. (1974b). The iridescent cornea of the sand goby, Pomatoschistus minutus (Pallas). In: Vision in Fishes. Ed. M.A. Ali. N.Y., Plenum Press, p. 263–278.Google Scholar
  27. Lythgoe, J.N. (1976). The ecology function and phylogeny of irridescent multilayers in fish cones. In: Light as an Ecological Factor U. Eds. G.C. Evans, R. Bainbridge and O. Rackham. Oxford, Blackwell, p. 211–247.Google Scholar
  28. Lythgoe, J.N. (1979). The Ecology of Vision. Oxford University Press.Google Scholar
  29. Marshall, N.B. (1971). Explorations in the Life of Fishes. Cambridge, Mass., Harvard.Google Scholar
  30. Marshall, N.B. (1979). Developments in Deep-Sea Biology. London, Blandford.Google Scholar
  31. Marshall, J., Mellerio, J. and Palmer, D.A. (1973). A schematic eye for the pigeon. Vision Res. 13: 2449–2453.CrossRefGoogle Scholar
  32. Martin, G.R. (1977). Absolute visual threshold and scotopic spectral sensitivity in the tawny owl Strix aluco. Nature (Lond.) 268: 636–638.CrossRefGoogle Scholar
  33. Moreland, J.D. and Lythgoe, J.N. (1968). Yellow corneas in fishes. Vision Res. 8: 1377–1380.CrossRefGoogle Scholar
  34. Munk, O. and Frederiksen, R.D. (1974). On the function of aphakic apertures in teleosts. Videnskabelige Meddelelser fra Dansk Naturhis-torisk forening 137: 65–94.Google Scholar
  35. Muntz, W.R.A. (1975). The visual consequences of yellow filtering pigments in the eyes of fishes occupying different habitats. In: Light as an Ecological Factor II. Eds. G.C. Evans, R. Bainbridge and O. Rackham, Oxford, Blackwell, p. 271–287.Google Scholar
  36. Muntz, W.R.A. (1976). On yellow lenses in mesopelagic animals. J. Mar. Biol. Ass. UK 56: 963–976.CrossRefGoogle Scholar
  37. Munz, F.W. and McFarland, W.N. (1977). Evolutionary adaptations of fishes to the photic environment. In: Handbook of Sensory Physiology, Vol. VII 5. Ed. F. Cresctelli. Berlin, Springer-Verlag, p. 193–274.Google Scholar
  38. Nicol, J.A.C. (1974). Studies on the eyes of fishes: Structure and ultrastructure. In: Vision in Fishes. Ed. M.A. Ali. N.Y., Plenum Press, p. 579–607.Google Scholar
  39. Nicol, J.A.C., Arnott, H.J. and Best, CG. (1973). Tapeta lucida in bony fishes (Actinopterygii): a survey. Can. J. Zool. 51: 69–81.CrossRefGoogle Scholar
  40. Pirenne, M.H. (1943). Binocular and uniocular threshold for vision. Nature (Lond.) 152: 698–699.CrossRefGoogle Scholar
  41. Protasov, U.R. (1970). Vision and Near Orientation of Fish (translation from Russian 1968). Israel Programme for Scientific translation, Jerusalem.Google Scholar
  42. Ripps, H. and Weale, R.A. (1976). The visual stimulus. In: The Eye, Vol. II a. Ed. H. Davson. N.Y., Academic Press, p. 43–99.Google Scholar
  43. Rodieck, R.A. (1973). The Vertebrate Retina. San Francisco, W.H. Freeman & Co.Google Scholar
  44. Smith, R.C. and Tyler, J.E. (1967). Optical properties of natural water. J. Opt. Soc. Am. 57: 589–601.CrossRefGoogle Scholar
  45. Stiles, W.S. (1948). The physical interpretation of the spectral sensitivity curve of the eye. In: Transactions of the Optical Convention of the Worshipful Company of Spectacle Makers. London, Spectacle Makers Co., p. 97–107.Google Scholar
  46. Tyler, J.E. (1959). Natural water as a monochromator. Limnol. Oceanogr. 4: 102–105.CrossRefGoogle Scholar
  47. Vakkur, G.J. and Bishop, P.W. (1963). The schematic eye of the cat. Vision Res. 3: 357–382.CrossRefGoogle Scholar
  48. Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. N.Y., Hafner.CrossRefGoogle Scholar
  49. Walls, G.L. and Judd, H.D. (1933). The intra-ocular colour filters of vertebrates. Brit. J. Opthal. 17: 641–75, 705–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. N. Lythgoe
    • 1
  1. 1.University of BristolBristolUK

Personalised recommendations