Mechanisms Regulating Adipocyte Lipolysis

  • Gale B. Carey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 441)


Mechanisms regulating adipocyte lipolysis are reviewed in three stages. The first stage examines plasma membrane hormone receptors and G-proteins. The primary regulators of adipose tissue lipolysis, the catecholamines, bind to the α2, β1, β2, and β3 adrenergic receptors. The α2 receptor couples with Gi-proteins to inhibit cyclic AMP formation and lipolysis, while the β receptors couple with Gs-proteins to stimulate cyclic AMP formation and lipolysis. The β1 receptor may mediate low level catecholamine stimulation, while the β3 receptor, which is activated by higher levels of catecholamines, may deliver a more sustained signal. The second stage examines the regulation of cyclic AMP, the intracellular messenger that activates protein kinase A. Adenylyl cyclase synthesizes cyclic AMP from ATP and is regulated by the G-proteins. Phosphodiesterase 3B hydrolyzes cyclic AMP to AMP and is activated and phosphorylated by both insulin and the catecholamines norepinephrine and epinephrine. The third stage focuses on the rate-limiting enzyme of lipolysis, hormone-sensitive lipase (HSL). This 82 to 88 kDa protein is regulated by reversible phosphorylation. Protein kinase A activates and phosphorylates the enzyme at 2 sites, and 3 phosphatases have been implicated in HSL dephosphorylation. The translocation of HSL from the cytosol to the lipid droplet in response to lipolytic stimulation may be facilitated by a family of lipid-associated droplets called perilipins that are heavily phosphorylated by protein kinase A and dephosphorylated by insulin. As the mechanisms regulating adipocyte lipolysis continue to be uncovered, we look forward to the challenges of integrating these findings with research at the in situ and in vivo levels.


Adipose Tissue Lipid Droplet Adenylyl Cyclase Adrenergic Receptor White Adipocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abumrad, N. A., C. M. Harmon, U. S. Barnela, and R. R. Whitesell. Insulin antagonism of catecholamine stimulation of fatty acid transport in the adipocyte. Studies on its mechanism of action. J. Biol. Chem. 263: 14678–14683, 1988.PubMedGoogle Scholar
  2. 2.
    Abumrad, N. A., C. R. Park, and R. R. Whitesell. Catecholamine activation of the membrane transport of long chain fatty acids in adipocytes is mediated by cyclic AMP and protein kinase. J. Biol. Chem. 261: 13082–13086, 1986.PubMedGoogle Scholar
  3. 3.
    Abumrad, N. A., P. R. Perry, and R. R. Whitesell. Stimulation by epinephrine of the membrane transport of long chain fatty acid in the adipocyte. J. Biol. Chem. 260: 9969–9971, 1985.PubMedGoogle Scholar
  4. 4.
    Alousi, A. A., J. R. Jasper, P. A. Insel, and H. J. Motulsky. Stoichiometry of receptor-Gs-adenylate cyclase interactions. FASEB J. 5: 2300–2303, 1991.PubMedGoogle Scholar
  5. 5.
    Arch, J. R. S. and S. Wilson. B3-Adrenoceptors and the regulation of metabolism in adipose tissues. Biochem. Soc. Transactions 24: 412–418, 1996.Google Scholar
  6. 6.
    Arner, P. Control of lipolysis and its relevance to development of obesity in man. Diabetes/Metabolism Reviews 4: 507–515, 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Arner, P., E. Kriegholm, P. Engfeldt, and J. Bolinder. Adrenergic regulation of lipolysis in situ at rest and during exercise. J. Clin. Invest. 85: 893–898, 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    Askew, E. W. and A. L. Hecker. Adipose tissue cell size and lipolysis in the rat: response to exercise intensity and food restriction. J. Nutr. 106: 1351–1360, 1976.PubMedGoogle Scholar
  9. 9.
    Askew, E. W., A. L. Hecker, V. G. Coppes, and F. B. Stifel. Cyclic AMP metabolism in adipose tissue of exercise-trained rats. J. Lipid Res. 19: 729–736, 1978.PubMedGoogle Scholar
  10. 10.
    Begin-Heick, N. Absence of the inhibitory effect of guanine nucleotides on adenylate cyclase activity in white adipocyte membranes of the ob/ob mouse. Effect of the ob gene. J. Biol. Chem. 260: 6187–6193, 1985.PubMedGoogle Scholar
  11. 11.
    Benovic, J. L., R. H. Strasser, M. G. Caron, and R. J. Lefkowitz. β-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. USA 83: 2797–2801, 1986.PubMedCrossRefGoogle Scholar
  12. 12.
    Berkich, D. A., D. R. Luthin, R. L. Woodard, S. J. Vannucci, J. Linden, and K. F. LaNoue. Evidence for regulated coupling of Al adenosine receptors by phosphorylation in Zucker rats. Am. J. Physiol. 268: E693–E704, 1995.PubMedGoogle Scholar
  13. 13.
    Blanchette-Mackie, E. J., N. K. Dwyer, T. Barber, R. A. Coxey, T. Takeda, C. M. Rondinone, J. L. Theodorakis, A. S. Greenberg, and C. Londos. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36: 1211–1226, 1995.PubMedGoogle Scholar
  14. 14.
    Borglum, J. D., G. Vassaux, B. Richelsen, D. Gallard, C. Darimont, G. Ailhaud, and R. Negrel. Changes in adenosine A1-and A2-receptor expression during adipose cell differentiation. Mol. Cell Endocrinol. 117: 17–25, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Bulow, J., J. Madsen, A. Astrup, and N. J. Christensen. Vasoconstrictor effect of high FFA/albumin ratios in adipose tissue in vivo. Acta Physiol. Scand. 125: 661–667, 1985.PubMedCrossRefGoogle Scholar
  16. 16.
    Carey, G. B. and R. B. Finnegan. Characterization of cyclic AMP efflux from swine adipocytes. FASEB J. 11: A437, 1997. (Abstract)Google Scholar
  17. 17.
    Carey, G. B., Sidmore. Exercise attenuates the antilipolytic effect of adenosine in adipocytes isolated from miniature swine. Int. J. Obesity 18: 155–160, 1994.Google Scholar
  18. 18.
    Champigny, O., D. Rucquier, O. Blondel, M. R. Mayers, M. G. Briscoe, and B. R. Holloway. β3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc. Natl. Acad. Sci. USA 88: 10774–10777, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Civelek, V. N., J. A. Hamilton, K. Tornheim, K. L. Kelly, and B. E. Corkey. Intracellular pH in adipocytes: effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc. Natl. Acad. Sci. USA 93: 10139–10144, 1996.PubMedCrossRefGoogle Scholar
  20. 20.
    Coghlan, V., B. Perrino, M. Howard, L. Langeberg, J. B. Hicks, W. M. Gallatin, and J. D. Scott. Association of protein kinase A and protein Phosphatase 2B with a common anchoring protein. Science 187: 108–111, 1995.CrossRefGoogle Scholar
  21. 21.
    Coppack, S. W., M. D. Jensen, and J. M. Miles. In vivo regulation of lipolysis in humans. J. Lipid Res. 35: 177–193, 1994.PubMedGoogle Scholar
  22. 22.
    Crandall, D. L., G. J. Hausman, and J. G. Kral. A review of the microcirculation of adipose tissue: Anatomic, metabolic, and angiogenic perspectives. Microcirculation 4: 211–232, 1997.PubMedCrossRefGoogle Scholar
  23. 23.
    Daaka, Y., J. A. Pitcher, M. Richardson, R. H. Stoffel, J. D. Robishaw, and R. J. Lefkowitz. Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases. Proc. Natl. Acad. Sci. USA 94: 2180–2185, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    DebBurman, S. K., J. Ptasienski, J. L. Benovic, and M. M. Hosey. G protein-coupled receptor kinase GRK2 is a phospholipid-dependent enzyme that can be conditionally activated by G protein betagamma subunits. J. Biol. Chem. 271: 22552–22562, 1996.PubMedCrossRefGoogle Scholar
  25. 25.
    Degerman, E., P. Belfrage, and V. C. Manganiello. Structure, localization, and regulation of cGMP-inhibited Phosphodiesterase (PDE3). J. Biol. Chem. 272: 6823–6826, 1997.PubMedCrossRefGoogle Scholar
  26. 26.
    Degerman, E., C. J. Smith, H. Tornquist, V. Vasta, P. Belfrage, and V. C. Manganiello. Evidence that insulin and isoprenaline activate the cGMP-inhibited low-km cAMP Phosphodiesterase in rat fat cells by phosphorylation. Proc. Natl. Acad. Sci. USA 87: 533–537, 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Denis-Henriot, D., P. de Mazancourt, P. K. Goldsmith, and Y. Giudicelli. G proteins in adipocytes and preadipocytes: Characterization, subcellular distribution, and potential roles for Gi2 and/or Gi3 in the control of cell proliferation. Cell Signal. 8: 225–234, 1996.PubMedCrossRefGoogle Scholar
  28. 28.
    Dong, Q., J. Schuchman, and G. B. Carey. Characterization of the swine adipocyte Al adenosine receptor using an optimized assay system. Comp. Biochem. Physiol. 108C: 269–280, 1994.Google Scholar
  29. 29.
    Egan, J. J., A. S. Greenberg, M.-K. Chang, and C. Londos. Control of endogenous phosphorylation of the major cAMP-dependent protein kinase substrate in adipocytes by insulin and β-adrenergic stimulation. J. Biol. Chem. 265: 18769–18775, 1990.PubMedGoogle Scholar
  30. 30.
    Egan, J. J., A. S. Greenberg, M. K. Chang, S. A. Wek, M. C. Moos, and C. Londos. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc. Natl. Acad. Sci. USA 89: 8537–8541, 1992.PubMedCrossRefGoogle Scholar
  31. 31.
    Eriksson, H., M. Ridderstrale, E. Degerman, D. Ekholm, C. J. Smith, V. C. Manganiello, P. Belfrage, and H. Tornqvist. Evidence for the key of the adipocyte cGMP-inhibited cAMP Phosphodiesterase in the antilipolytic action of insulin. Biochim. Biophys. Acta 1266: 101–107, 1995.PubMedCrossRefGoogle Scholar
  32. 32.
    Fredericks, Z. L., J. A. Pitcher, and R. J. Lefkowitz. Identification of the G protein-coupled receptor kinase phosphorylation sites in the human beta2-adrenergic receptor. J. Biol. Chem. 271: 13796–13803, 1996.PubMedCrossRefGoogle Scholar
  33. 33.
    Galitzky, J., M. Reverte, M. Portillo, C. Carpene, M. Lafontan, and M. Berlan. Coexistence of β1-, β2-, and β3-adrenoceptors in dog fat cells and their differential activation by catecholamines. Am. J. Physiol. 264: E403–E412, 1993.PubMedGoogle Scholar
  34. 34.
    Garton, A. J. and S. J. Yeaman. Identification and role of the basal phosphorylation site on hormone-sensitive lipase. Eur. J. Biochem. 191: 245–250, 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Giudicelli, Y., D. Lacasa, and B. Agli. Alterations induced by a prolonged fasting: Opposite effects on the β-adrenergic receptor-coupled adenylate-cyclase system and on lipolysis in fat cells from rat. Eur. J. Biochem. 121: 301–308, 1982.PubMedCrossRefGoogle Scholar
  36. 36.
    Granneman, J. G. Why do adipocytes make the β3 adrenergic receptor? Cell Signal. 7: 9–15, 1995.PubMedCrossRefGoogle Scholar
  37. 37.
    Green, A., S. Swenson, J. L. Johnson, and M. Partin. Characterization of human adipocyte adenosine receptors. Biochem. Biophys. Res. Commun. 163: 137–142, 1989.PubMedCrossRefGoogle Scholar
  38. 38.
    Greenberg, A. S., J. J. Egan, S. A. Wek, N. B. Garty, E. J. Blanchette-Mackie, and C. Londos. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J. Biol. Chem. 266: 11341–11346, 1991.PubMedGoogle Scholar
  39. 39.
    Guo, Z., C. M. Johnson, and M. D. Jensen. Regional lipolytic responses to isoproterenol in women. Am. J. Physiol. 273: E108–E112, 1997.PubMedGoogle Scholar
  40. 40.
    Hadcock, J. R. and C. C. Malbon. Down-regulation of β-adrenergic receptors: agonist-induced reduction in receptor mRNA levels. Proc. Natl. Acad. Sci. USA 82: 129–133, 1988.Google Scholar
  41. 41.
    Hanoune, J., Y. Pouille, E. Tzavara, T. Shen, L. Lipskaya, N. Miyamoto, Y. Suzuki, and N. Defer. Adenylyl cyclases: structure, regulation and function in an enzyme superfamily. Mol. Cell Endocrinol. 128: 179–194, 1997.PubMedCrossRefGoogle Scholar
  42. 42.
    Haraguchi, K. and M. Rodbell. Isoproterenol stimulates shift of G proteins from plasma membrane to pinocytotic vesicles in rat adipocytes: a possible means of signal dissemination. Proc. Natl. Acad. Sci. USA 87: 1208–1212, 1990.PubMedCrossRefGoogle Scholar
  43. 43.
    Hausdorf, W. P., M. G. Caron, and R. J. Lefkowitz. Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J. 4: 2881–2889, 1990.Google Scholar
  44. 44.
    Hirsch, A. H. and O. M. Rosen. Lipolytic stimulation modulates the subcellular distribution of hormone-sensitive lipase in 3T3-L1 cells. Proc. Natl. Acad. Sci. USA 25: 665–677, 1984.Google Scholar
  45. 45.
    Hoffman, B. B., H. Chang, E. Dall’Aglio, and G. M. Reaven. Desensitization of adenosine receptor-mediated inhibition of lipolysis. J. Clin. Invest. 78: 185–190, 1986.PubMedCrossRefGoogle Scholar
  46. 46.
    Holm, C., P. Belfrage, and G. Fredrikson. Human adipose tissue hormone-sensitive lipase: identification and comparison with other species. Biochim. Biophys. Acta 1006: 193–197, 1989.PubMedCrossRefGoogle Scholar
  47. 47.
    Honnor, R. C., G. S. Dhillon, and C. Londos. cAMP-dependent protein kinaseand lipolysis in rat adipocytes. II Definition of steady-state relationship with lipolytic and antilipolytic modulators. J. Biol. Chem. 260: 15130–15138, 1985.PubMedGoogle Scholar
  48. 48.
    Houslay, M. D. Regulation of adenylate cyclase (EC activity by its lipid environment. Proc. Nutr. Soc. 44: 157–165, 1985.PubMedCrossRefGoogle Scholar
  49. 49.
    Jepson, C. A. and S. J. Yeaman. Inhibition of hormone-sensitive lipase by intermediary lipid metabolites. FEBS Lett. 310: 197–200, 1992.PubMedCrossRefGoogle Scholar
  50. 50.
    Kaartinen, J. M., S. P. Hreniuk, L. F. Martin, S. Ranta, K. F. LaNoue, and J. J. Ohisalo. Attenuated adenosine-sensitivity and decreased adenosine-receptor number in adipocyte plasma membranes in human obesity. Biochem. J. 279: 17–22, 1991.PubMedGoogle Scholar
  51. 51.
    Kaartinen, J. M., K. F. LaNoue, L. F. Martin, H.-L. Vikman, and J. J. Ohisalo. β-adrenergic responsiveness of adenylate cyclase in human adipocyte plasma membranes in obesity and after massive weight reduction. Metabolism 44: 1288–1292, 1995.PubMedCrossRefGoogle Scholar
  52. 52.
    Kaartinen, J. M., K. F. LaNoue, and J. J. Ohisalo. Quantitation of inhibitory G-proteins in fat cells of obese and normal-weight human subjects. Biochim. Biophys. Acta 1201: 69–75, 1994.PubMedCrossRefGoogle Scholar
  53. 53.
    Kather, H. Role of “local” hormones in regulation of lipolysis. Prostaglandins 33: 831–836, 1987.PubMedGoogle Scholar
  54. 54.
    Krief, S., B. Feve, and B. Baude. Transcriptional modulation by n-butyric acid of β1-, β2-and β3-adrenergic receptor balance in 3T3-F442A adipocytes. J. Biol. Chem. 269: 6664–6670, 1994.PubMedGoogle Scholar
  55. 55.
    Krupinski, J., F. Coussen, H. A. Bakalyar, W.-J. Tang, P. G. Feinstein, K. Orth, C. Slaughter, R. R. Reed, and A. G. Gilman. Adenylyl cyclase amino acid sequence: Possible channel-or transporter-like structure. Science 244: 1558–1564, 1989.PubMedCrossRefGoogle Scholar
  56. 56.
    Lafontan, M. and M. Berlan. Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34: 1057–1091, 1993.PubMedGoogle Scholar
  57. 57.
    Lafontan, M., A. Bousquet-Melou, J. Galitzky, P. Barbe, C. Carpene, D. Langin, M. Berlan, P. Valet, I. Castan, A. Bouloumie, and J.-S. Saulnier-Blache. Adrenergic receptors and fat cells: differential recruitment by physiological amines and homologous regulation. Obes Res. 3: 507S–514S, 1995.PubMedCrossRefGoogle Scholar
  58. 58.
    Lafontan, M. and D. Langin. Cellular aspects of fuel mobilization and selection in white adipocytes. Proc. Nutr. Soc. 54: 49–63, 1995.PubMedCrossRefGoogle Scholar
  59. 59.
    Leibel, R. L. and N. K. Edens. Control of acylglyceride stores in human adipose tissue: re-esterification and lipolysis. Comparability of in vivo and in vitro findings. In: Obesity: Towards a Molecular Approach. NY: Alan R. Liss, Inc. 1990, p. 189-201.Google Scholar
  60. 60.
    Lillioja, S., J. E. Foley, D. Bogardus, D. M. Mott, and B. V. Howard. Free fatty acid metabolism and obesity in man: in vivo and in vitro comparisons. Metabolism 35: 505–514, 1986.PubMedCrossRefGoogle Scholar
  61. 61.
    Lohse, M. J., J. L. Benovic, J. Codina, M. G. Caron, and R. J. Lefkowitz. β-arrestin: a protein that regulates β-adrenergic receptor function. Science 248: 1547–1550, 1990.PubMedCrossRefGoogle Scholar
  62. 62.
    Londos, C., D. M. F. Cooper, and M. Rodbell. Receptor-mediated stimulation and inhibition of adenylate cyclases: The fat cell as a model system. In: Advances in Cyclic Nucleotide Research, Vol. 14, edited by J. E. Dumont, P. Greengard, and G. A. Robison. NY: Raven Press, 1981, p. 163-171.Google Scholar
  63. 63.
    Londos, C., J. Gruia-Gray, D. L. Brasaemle, C. M. Rondinone, T. Taked, N. K. Dwyer, T. Barber, A. R. Kimmel, and E. J. Blanchette-Mackie. Perilipin: possible roles in structure and metabolism of intracellular neutral lipids in adipocytes and steroidogenic cells. Int. J. Obesity 20: S97–S101, 1996.Google Scholar
  64. 64.
    Lonnquist, F., H. Wahrenberg, L. Hellstrom, S. Reynisdottir, and P. Arner. Lipolytic catecholamine resistance due to decreased β2-adrenoceptor expression in fat cells. J. Clin. Invest. 90: 2175–2186, 1992.CrossRefGoogle Scholar
  65. 65.
    Lonnroth, P., P.-A. Jansson, B. B. Fredholm, and U. Smith. Microdialysis of intercellular adenosine concentration in subcutaneous tissue in humans. Am. J. Physiol. 256: E250–E255, 1989.PubMedGoogle Scholar
  66. 66.
    Makino, H., P. M. deBuschiazzo, R. H. Pointer, J. E. Jordan, and T. Kono. Characterization of insulin-sensitive Phosphodiesterase in fat cells. I Effects of salts and oxidation-reduction agents. J. Biol. Chem. 255: 7845–7849, 1980.PubMedGoogle Scholar
  67. 67.
    Mersmann, H. J., G. B. Carey, and E. O’Brian Smith. Influence of nutritional weaning on porcine adipocyte β-adrenergic and adenosine A1 receptors. J. Anim. Sci. 75: 2368–2377, 1997.PubMedGoogle Scholar
  68. 68.
    Morimoto, C., T. Tsujita, and H. Okuda. Norepinephrine-induced lipolysis in rat fat cells from visceral and subcutaneous sites: role of hormone-sensitive lipase and lipid droplets. J. Lipid Res. 38: 132–138, 1997.PubMedGoogle Scholar
  69. 69.
    Murphy, G. J., D. M. Kirkham, M. A. Cawthorne, and P. Young. Correlation of beta3-adrenoceptor-induced activation of cyclic AMP-dependent protein kinase with activation of lipolysis in rat white adipocytes. Biochem. Pharm. 46: 575–581, 1993.PubMedCrossRefGoogle Scholar
  70. 70.
    Nantel, F., H. Bonin, L. J. Emorine, V. Zilberfarb, A. D. Strosberg, M. Bouvier, and S. Marnilo. The human β3-adrenergic receptor is resistant to short-term agonist-promoted desensitization. Mol. Pharmacol. 43: 548–555, 1993.PubMedGoogle Scholar
  71. 71.
    Nieto, J. L., I. D. Laviada, A. Guillen, and A. Haro. Adenylyl cyclase system is affected differently by endurance physical training in heart and adipose tissue. Biochem. Pharm. 51: 1321–1329, 1996.PubMedCrossRefGoogle Scholar
  72. 72.
    Nurnberg, B., T. Gudermann, and G. Schultz. Receptorsand G proteins as primary components of transmembrane signal transduction. Part 2. G proteins: structure and function. J. Mol. Med. 73: 123–132, 1995.PubMedCrossRefGoogle Scholar
  73. 73.
    Okuda, H., C. Morimoto, and T. Tsujita. Role of endogenous lipid droplets in lipolysis in rat adipocytes. J. Lipid Res. 35: 36–44, 1994.PubMedGoogle Scholar
  74. 74.
    Parsons, W. J. and G. L. Stiles. Heterologous desensitization of the inhibitory A1 adenosine receptoradenylate cyclase system in rat adipocytes. Regulation of both Ns and Ni. J. Biol. Chem. 262: 841–847, 1987.PubMedGoogle Scholar
  75. 75.
    Premont, R. T., J. Inglese, and R. J. Lefkowitz. Protein kinases that phsphorylate activated G protein-coupled receptors. FASEB J. 9: 175–182, 1995.PubMedGoogle Scholar
  76. 76.
    Raguso, C. A., A. R. Coggan, L. S. Sidossis, A. Gastaldelli, and R. R. Wolfe. Effect of theophylline on substrate metabolism during exercise. Metabolism 45: 1153–1160, 1996.PubMedCrossRefGoogle Scholar
  77. 77.
    Rahn, T., M. Ridderstrale, H. Tornquist, V. C. Manganiello, G. Fredriksson, P. Belfrage, and E. Degerman. Essential role of phosphatidylinositol 3-kinase in insulin-induced activation and phosphorylation of the cAMP-inhibited cAMP Phosphodiesterase in rat adipocytes. FEBS Lett. 350: 314–318, 1994.PubMedCrossRefGoogle Scholar
  78. 78.
    Rahn, T., L. Ronnstrand, M.-J. Leroy, C. Wernstedt, H. Tornqvist, V. C. Manganiello, P. Belfrage, and E. Degerman. Identification of the site in the cAMP-inhibited Phosphodiesterase phosphorylated in adipocytes in response to insulin and isoproterenol. J. Biol. Chem. 271: 11575–11580, 1996.PubMedCrossRefGoogle Scholar
  79. 79.
    Richelsen, B. Increased alpha2-but similar β-adrenergic receptor activities in subcutaneous gluteal adipocytes from females compared with males. Eur. J. Clin. Invest. 1: 302–309, 1986.CrossRefGoogle Scholar
  80. 80.
    Rodbell, M. G proteins: out of the cytoskeletal closet. Mt. Sinai J. Med. 63: 381–386, 1996.PubMedGoogle Scholar
  81. 81.
    Ruiz-Gomez, A. and F. Mayor. Beta-adrenergic receptor kinase (GRK2) colocalizes with beta-adrenergic receptors during agonist-induced receptor internalization. J. Biol. Chem. 272: 9601–9604, 1997.PubMedCrossRefGoogle Scholar
  82. 82.
    Samra, J. S., E. J. Simpson, M. L. Clark, C. D. Forster, S. M. Humphreys, I. A. Macdonald, and K. N. Frayn. Effects of epinephrine infusion on adipose tissue: interactions between blood flow and lipid metabolism. Am. J. Physiol. 271: E834–E839, 1996.PubMedGoogle Scholar
  83. 83.
    Scott, J. D. and S. McCartney. Localization of A-kinase through anchoring proteins. Molec. Endo. 8: 5–11, 1994.CrossRefGoogle Scholar
  84. 84.
    Shepherd, R. E., M. D. Bah, and K. M. Nelson. Enhanced lipolysis is not evident in adipocytes from exercise-trained SHR. J. Appl. Physiol. 61: 1301–1308, 1986.PubMedGoogle Scholar
  85. 85.
    Shepherd, R. E., E. G. Noble, G. A. Klug, and P. D. Gollnick. Lipolysis and cAMP accumulation in adipocytes in response to physical training. J. Appl. Physiol. 50: 143–148, 1981.PubMedGoogle Scholar
  86. 86.
    Smith, C. J., V. Vasta, E. Degerman, P. Belfrage, and V. C. Manganiello. Hormone-sensitive cyclic GMP-inhibited cyclic AMP Phosphodiesterase in rat adipocytes. J. Biol. Chem. 266: 13385–13390, 1991.PubMedGoogle Scholar
  87. 87.
    Smith, G. M., A. J. Garton, A. Aitken, and S. J. Yeaman. Evidence for a multi-domain structure for hormone-sensitive lipase. FEBS Lett. 396: 90–94, 1996.PubMedCrossRefGoogle Scholar
  88. 88.
    Sollevi, A. and B. B. Fredholm. The antilipolytic effect of endogenous and exogenous adenosine in canine adipose tissue in situ. Acta Physiol. Scand. 113: 53–60, 1981.PubMedCrossRefGoogle Scholar
  89. 89.
    Stallknecht, B., L. Simonsen, J. Bulow, J. Vinten, and H. Galbo. Effect of training on epinephrine-stimulated lipolysis determined by microdialysis in human adipose tissue. Amer. J. Physiol. 269: E1059–E1066, 1995.PubMedGoogle Scholar
  90. 90.
    Strader, C. D., T. M. Fong, M. R. Tota, D. Underwood, and R. A. F. Dixon. Structure and function of G protein-coupled receptors. Ann. Rev. Biochem. 63: 101–132, 1994.PubMedCrossRefGoogle Scholar
  91. 91.
    Stralfors, P. and R. C. Honnor. Insulin-induced dephosphorylation of hormone-sensitive lipase. Correlation with lipolysis and cAMP-dependent protein kinase activity. Eur. J. Biochem. 182: 378–385, 1989.CrossRefGoogle Scholar
  92. 92.
    Strosberg, A. D. Structure, function, and regulation of the three β-adrenergic receptors. Obes Res. 3: 501S–505S, 1995.PubMedCrossRefGoogle Scholar
  93. 93.
    Teo, T., S. Ooi, and E. H. A. Wong. Stimulation of rat fat cell Phosphodiesterase by adenosine. FEBS Lett. 128: 75–78, 1981.PubMedCrossRefGoogle Scholar
  94. 94.
    Vannucci, S. J., C. M. Klim, K. F. LaNoue, and L. F. Martin. Regulation of fat cell adenylate cyclase in young zucker (fa/fa) rats: Alterations in GTP sensitivity of adenosine Al mediated inhibition. Int. J. Obesity 14: 125–134, 1990.Google Scholar
  95. 95.
    Wess, J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 11: 346–354, 1997.PubMedGoogle Scholar
  96. 96.
    Wise, L. S. and R. L. Jungas. Evidence for a dual mechanism of lipolysis activation by epinephrine in rat adipose tissue. J. Biol. Chem. 253: 2624–2627, 1978.PubMedGoogle Scholar
  97. 97.
    Wood, S. L., N. Emmison, A. C. Borthwick, and S. J. Yeaman. The protein phosphatases responsible for dephosphorylation of hormone-sensitive lipase in isolated rat adipocytes. Biochem. J. 295: 531–535, 1993.PubMedGoogle Scholar
  98. 98.
    Yeaman, S. J. Hormone-sensitive lipase—a multipurpose enzyme in lipid metabolism. Biochim. Biophys. Acta 1052: 128–132, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Gale B. Carey
    • 1
  1. 1.Department of Animal and Nutritional SciencesKendall Hall, University of New HampshireDurhamUSA

Personalised recommendations