Advertisement

Quantum Integrable Systems and Elliptic Solutions of Classical Discrete Nonlinear Equations

  • I. Krichever
  • O. Lipan
  • P. Wiegmann
  • A. Zabrodin
Part of the NATO ASI Series book series (NSSB, volume 361)

Abstract

In spite of the diversity of solvable models of quantum field theory and the vast variety of methods, the final results display dramatic unification: the spectrum of an integrable theory with a local interaction is given by a sum of elementary energies
$$ E = \sum\limits_i {\varepsilon \left( {{u_i}} \right)} $$
(1.1)
where u i obey a system of algebraic or transcendental equations known as Bethe equations [1], [2]. The major ingredients of Bethe equations are determined by the algebraic structure of the problem. A typical example of a system of Bethe equations (related to A i -type models with elliptic R-matrix) is
$$ {e^{ - 4\eta \nu }}\frac{{\phi \left( {{u_j}} \right)}}{{\phi \left( {{u_j} - 2} \right)}} = - \mathop \Pi \limits_k \frac{{\sigma \left( {\eta \left( {{u_j} - {u_k} + 2} \right)} \right)}}{{\sigma \left( {\eta \left( {{u_j} - {u_k} - 2} \right)} \right)}} $$
(1.2)
where σ(x) is the Weierstrass σ-function and
$$ \phi \left( u \right) = \mathop \Pi \limits_{k = 1}^N \sigma \left( {\eta \left( {u - {y_k}} \right)} \right) $$
(1.3)
.

Keywords

Transfer Matrix Bethe Equation Auxiliary Space Determinant Formula Quantum Integrable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Baxter, Exactly solved models in statistical mechanics. Academic Press, 1982.MATHGoogle Scholar
  2. [2]
    M. Gaudin, La fonction d’onde de Bethe, Masson, 1983.MATHGoogle Scholar
  3. [3]
    R. Hirota, Discrete analogue of a generalized Toda equation, Journ. Phys. Soc. Japan 50 (1981) 3785–3791.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    T. Miwa, On Hirota’s difference equations, Proc. Japan Acad. 58 (1982) 9–12MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    L.D. Faddeev and L.A. Takhtadjan, Quantum inverse scattering method and the XYZ Heisenberg model, Uspekhi Mat. Nauk 34:5 (1979) 13–63.MathSciNetGoogle Scholar
  6. [6]
    P.P. Kulish and N.Yu. Reshetikhin, On GL 3 -invariant solutions of the Yang-Baxter equation and associated quantum systems, Zap. Nauchn. Sem. LOMI 120 (1982) 92–121 (in russian), Engl. transl.: J. Soviet Math. 34 (1986) 1948–1971.MathSciNetGoogle Scholar
  7. [7]
    P.P. Kulish and E.K. Sklyanin, Quantum spectral transform method. Recent developments, Lecture Notes in Physics 151 61–119, Springer, 1982.Google Scholar
  8. [8]
    M. Jimbo, T. Miwa and M. Okado, An A n-1 (1) family of solvable lattice models, Mod. Phys. Lett. B1 (1987) 73–79.ADSCrossRefMATHGoogle Scholar
  9. [9]
    N.Yu. Reshetikhin, The functional equation method in the theory of exactly soluble quantum systems, Sov. Phys. JETP 57 (1983) 691–696.MathSciNetGoogle Scholar
  10. [10]
    A. Klümper and P. Pearce, Conformai weights of RSOS lattice models and their fusion hierarchies, Physica A183 (1992) 304–350.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Kuniba, T. Nakanishi and J. Suzuki, Functional relations in solvable lattice models, I: Functional relations and representation theory, II: Applications, Int. Journ. Mod. Phys. A9 (1994) 5215–5312.MathSciNetADSCrossRefMATHGoogle Scholar
  12. [12]
    H. Airault, H. McKean and J. Moser, Rational and elliptic solutions of the KdV equation and related many-body problem, Comm. Pure and Appl. Math. 30 (1977), 95–125.MathSciNetADSCrossRefMATHGoogle Scholar
  13. [13]
    D.V. Chudnovsky and G.V. Chudnovsky, Pole expansions of non-linear partial differential equations, Nuovo Cimento 40B (1977), 339–350.MathSciNetCrossRefGoogle Scholar
  14. [14]
    I.M. Krichever, Elliptic solutions of Kadomtsev-Petviashvilii equation and inte-grable systems of particles, Punc. Anal. App 14 (1980), n 4, 282–290.MathSciNetCrossRefGoogle Scholar
  15. [15]
    I. Krichever, O. Babelon, E. Billey and M. Talon, Spin generalization of the Calogero-Moser system and the Matrix KP equation, Preprint LPTHE 94/42.Google Scholar
  16. [16]
    I.M. Krichever and A.V. Zabrodin, Spin generalization of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra, Uspekhi Mat. Nauk, 50:6 (1995), hep-th/9505039.MathSciNetGoogle Scholar
  17. [17]
    S.N.M. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Ann. Phys. (NY) 170 (1986), 370–405.MathSciNetADSCrossRefMATHGoogle Scholar
  18. [18]
    F. Nijhof, O. Ragnisco and V. Kuznetsov, Integrable time-discretization of the Ruijsenaars-Schneider model, Commun. Math. Phys. 176 (1996) 681–700.ADSCrossRefGoogle Scholar
  19. [19]
    P.P. Kulish, N.Yu. Reshetikhin and E.K. Sklyanin, Yang-Baxter equation and representation theory: I, Lett. Math. Phys. 5 (1981) 393–403.MathSciNetADSCrossRefMATHGoogle Scholar
  20. [20]
    R. Hirota, Discrete two-dimensional Toda molecule equation, Journ. Phys. Soc. Japan 56 (1987) 4285–4288.MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Bilal and J.-. Gervais, Extended c = ∞ conformai systems from classical Toda field theories, Nucl. Phys. B314 (1989) 646–686.MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    V. Bazhanov and N. Reshetikhin, Restricted solid on solid models connected with simply laced algebras and conformai field theory, Journ. Phys. A23 (1990) 1477–1492.MathSciNetMATHGoogle Scholar
  23. [23]
    Y. Zhou and P. Pearce, Solution of functional equations of restricted A (1)n-1 fused lattice models, Preprint hep-th/9502067 (1995).Google Scholar
  24. [24]
    M. Sato, Soliton equations as dynamical systems on infinite dimensional Grass-mann manifolds, RIMS Kokyuroku 439 (1981) 30–46.Google Scholar
  25. [25]
    M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. RIMS, Kyoto Univ. 19 (1983) 943–1001.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. IHES 61 (1985) 5–65.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    W.V.D. Hodge and D. Pedoe, Methods of algebraic geometry, volume I, Cambridge University Press, Cambridge, 1947.Google Scholar
  28. [28]
    J.W.P. Hirschfeld and J.A. Thas, General Galois geometries, Claredon Press, Oxford, 1991.MATHGoogle Scholar
  29. [29]
    P. Griffiths and J. Harris, Principles of algebraic geometry, A Wiley-Interscience Publication, John Wiley & Sons, 1978.MATHGoogle Scholar
  30. [30]
    Al.B. Zamolodchikov, On the thermodynamic Bethe Ansatz equations for reflec-tionless ADE scattering theories, Phys. Lett. B253 (1991) 391–394.MathSciNetCrossRefGoogle Scholar
  31. [31]
    F. Ravanini, A. Valleriani and R. Tateo, Dynkin TBA’s, Int. Journ. Mod. Phys. A8 (1993) 1707–1727.MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R. Hirota, Nonlinear partial difference equations III; Discrete sine-Gordon equation, Journ. Phys. Soc. Japan 43 (1977) 2079–2086.MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    L.D. Faddeev and A.Yu. Volkov, Quantum inverse scattering method on a space-time lattice, Teor. Mat. Fiz. 92 (1992) 207–214 (in russian);MathSciNetGoogle Scholar
  34. [33a]
    L.D. Faddeev, Current-like variables in massive and massless integrable models, Lectures at E.Fermi Summer School, Varenna 1994, hep-th/9406196.Google Scholar
  35. [34]
    A. Bobenko, N. Kutz and V. Pinkall, The discrete quantum pendulum, Phys. Lett. A177 (1993) 399–404.MathSciNetCrossRefGoogle Scholar
  36. [35]
    S. Saito and N. Saitoh, Linearization of bilinear difference equations, Phys. Lett. A120 (1987) 322–326;MathSciNetCrossRefGoogle Scholar
  37. [35a]
    S. Saito and N. Saitoh, Gauge and dual symmetries and linearization of Hirota’s bilinear equations, Journ. Math. Phys. 28 (1987) 1052–1055.MathSciNetADSCrossRefMATHGoogle Scholar
  38. [36]
    K. Ueno and K. Takasaki, Toda lattice hierarchy, Adv. Studies in Pure Math. 4 (1984) 1–95.MathSciNetGoogle Scholar
  39. [37]
    A. Kirillov and N. Reshetikhin, Exact solution of the integrable XXZ Heisenberg model with arbitrary spin, I, II, Journ. Phys. A20 (1987) 1565–1597.MathSciNetGoogle Scholar
  40. [38]
    V. Bazhanov and N. Reshetikhin, Critical RSOS models and conformai field theory, Int. Journ. Mod. Phys. A4 (1989) 115–142.MathSciNetADSCrossRefMATHGoogle Scholar
  41. [39]
    J.-L. Gervais and A. Neveu, Novel triangle relation and absence of tachyons in Liouville string field theory, Nucl. Phys. B238 (1984) 125MathSciNetADSCrossRefGoogle Scholar
  42. [40]
    G. Jorjadze, A. Pogrebkov, M. Polivanov and S. Talalov, Liouville field theory: IST and Poisson bracket structure, Journ. Phys. A19 (1986) 121–139.MathSciNetMATHGoogle Scholar
  43. [41]
    A. Leznov and M. Saveliev, Theory of group representations and integration of nonlinear systems, Physica 3D (1981) 62–72;MATHGoogle Scholar
  44. [41a]
    A. Leznov and M. Saveliev, Group-theoretical methods for integartion of nonlinear dynamical systems, Progress in Physics series 15, Birkhaüser-Verlag, Basel, 1992.CrossRefGoogle Scholar
  45. [42]
    J.-L. Gervais and Y. Matsuo, W-geometries, Phys. Lett. B274 (1992) 309–316;MathSciNetCrossRefGoogle Scholar
  46. [42a]
    J.-L. Gervais and Y. Matsuo, Classical A n -W-geometry, Comm. Math. Phys. 152 (1993) 317–368.MathSciNetADSCrossRefMATHGoogle Scholar
  47. [43]
    E. Prenkel and N. Reshetikhin, Quantum affine algebras and deformations of the Virasoro and W-algebras, Preprint q-alg/9505025 (1995).Google Scholar
  48. [44]
    A. Kuniba and J. Suzuki, Analytic Bethe Ansatz for fundamental representations of Yangians, hep-th/9406180.Google Scholar
  49. [45]
    V. Bazhanov, S. Lukyanov and A. Zamolodchikov, Integrable structure of con-formal field theory, quantum KdV theory and thermodynamic Bethe Ansatz, preprint CLNS 94/1316, RU-94–98, hep-th/9412229.Google Scholar
  50. [46]
    B. McCoy and T.T. Wu, Nonlinear partial difference equations for the two-dimensional Ising model, Phys. Rev. Lett. 45 (1980) 675–678;MathSciNetADSCrossRefGoogle Scholar
  51. [46a]
    B. McCoy and T.T. Wu, Nonlinear partial difference equations for the two-spin correlation function of the two-dimensional Ising model, Nucl. Phys. B180 (1981) 89–115.MathSciNetADSCrossRefGoogle Scholar
  52. [47]
    J.H.H. Perk, Quadratic identities for Ising model correlations, Phys. Lett. A79 (1980) 3–5.MathSciNetCrossRefGoogle Scholar
  53. [48]
    H. Au-Yang and J.H.H. Perk, Toda lattice equation and wronskians in the 2d Ising model, Physica 18D (1986) 365–366.MathSciNetGoogle Scholar
  54. [49]
    N.M. Bogoliubov, A.G. Izergin and V.E. Korepin, Quantum inverse scattering method and correlation functions, Cambridge University Press, 1993.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • I. Krichever
    • 1
    • 2
  • O. Lipan
    • 3
  • P. Wiegmann
    • 4
    • 5
  • A. Zabrodin
    • 6
    • 7
  1. 1.Department of Mathematics of Columbia UniversityMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.James Franck Institute of the University of ChicagoChicagoUSA
  4. 4.James Franck and Enrico Fermi InstitutesThe University of ChicagoChicagoUSA
  5. 5.Landau Institute for Theoretical PhysicsRussia
  6. 6.Joint Institute of Chemical PhysicsMoscowRussia
  7. 7.ITEPMoscowRussia

Personalised recommendations