Advertisement

Multidimensional Fluorescence Microscopy: Optical Distortions in Quantitative Imaging of Biological Specimens

  • N. S. White
  • R. J. Errington
  • M. D. Fricker
  • J. L. Wood

Abstract

Photometric and morphometric measurement of biological microscopy specimens often poses problems due to their optical properties and those of the microscope (Fricker and White, 1992). 3-D Visualisation (White, 1995) and quantification (Sandison et al, 1995, Taylor and Wang, 1989b) of fluorescent probes in living tissue is possible by computer assisted confocal microscopy (e. g. Brackenhoff et al, 1979; Shotton, 1989; Wilson, 1990, Inoué 1995). The specimen is both the object under investigation and also a key component of this integrated imaging system.

Keywords

Guard Cell Spatial Distortion Epidermal Strip Axial Distortion Integrate Imaging System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agard, D.A. and Sedat, J.W. (1983). Three dimensional architecture of a polytene nucleus. Nature 302, 676–681.PubMedCrossRefGoogle Scholar
  2. Born, M. and Wolf, E. (1991), Principles of Optics, Pergamon press, Oxford.Google Scholar
  3. Brackenhoff, G.J., Blom, P. and Barends, P. (1979). Confocal scanning light microscopy with high aperture immersion lenses. J. Microsc. 117, 219–232.CrossRefGoogle Scholar
  4. Carlsson, K. (1991). Influence of specimen refractive index, detector signal integration, and non-uniform scan speed on the imaging properties in confocal microscopy. J. Microsc. 163, 167–178.CrossRefGoogle Scholar
  5. Carlsson, K. and Liljeborg, A. (1989). A confocal laser microscope scanner for digital recording of optical serial sections. J. Microsc. 153, 171–180.PubMedCrossRefGoogle Scholar
  6. Cogswell, C. J. and Larkin, K.G. (1995). The specimen illumination path and its effect on image quality. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 127–138. Plenum Press, New York.CrossRefGoogle Scholar
  7. Denk, W., Strickler, J.H. and Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 73–76PubMedCrossRefGoogle Scholar
  8. Denk, W., Piston, D.W. and Webb, W.W. (1995). Two-photon molecular excitation in laser scanning microscopy. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 445–458. Plenum Press, New York.CrossRefGoogle Scholar
  9. Edwards, M.C., Smith, G.M. and Bowling, D.J.F. (1988). Guard cells extrude protons prior to stomatal opening-a study using fluorescence microscopy and pH electrodes. J. Exp. Bot. 39, 1541–1547.CrossRefGoogle Scholar
  10. Entwistle, A. and Noble, M. (1994). Optimising the performance of confocal point scanning laser microscopes over the full field of view. J. Microsc. 175, 238–251.CrossRefGoogle Scholar
  11. Fricker, M.D. and White, N.S. (1992) Wavelength considerations in confocal microscopy of botanical specimens, J. Microsc. 166(1), 29–42CrossRefGoogle Scholar
  12. Gahm, T. and Witte, S. (1986). Measurement of optical thickness of transparent tissue layers. J. Microsc. 141, 101–110.PubMedCrossRefGoogle Scholar
  13. Gu, M. and Sheppard, C.J.R. (1995). Comparison of three dimensional imaging properties between two-photon and single photon fluorescence microscopy. J. Microsc. 177, 128–137.CrossRefGoogle Scholar
  14. Guilak, F. (1993), Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J. Microsc. 173(3), 245–256.CrossRefGoogle Scholar
  15. Hell, S., Reiner, G., Cremer, C. and Stelzer, H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 169(3), 391–405.CrossRefGoogle Scholar
  16. Holmes, T.J., Bhattacharyya, S., Cooper, J.A., Hanzel, D., Krishnamurthi, V., Lin, W.C., Roysam, B., Szarowski, D.H. and Turner, J.N. (1995). Light microscopic images reconstructed by maximum likelihood deconvolution. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 389–402. Plenum Press, New York.CrossRefGoogle Scholar
  17. Inoué, S. (1986). Video Microscopy. Plenum press, New York.Google Scholar
  18. Inoué, S. (1995). Foundations of confocal scanned imaging in light microscopy. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 1–18. Plenum Press, New York.CrossRefGoogle Scholar
  19. Inoué, S. and Oldenbourg, R. (1993). Optical instruments; Microscopes. In: Handbook of Optics. Second Edition (Ed. Optical society of America). McGraw-Hill, New York.Google Scholar
  20. Jacobsen, H., Hanninen, P., Soini, E. and Hell, S.W. (1994). Refractive index induced aberrations in two-photon confocal fluorescence microscopy. J. Microsc. 176, 226–230.CrossRefGoogle Scholar
  21. Keller, H.E. (1995). Objective lenses for confocal microscopy. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 111–126. Plenum Press, New York.CrossRefGoogle Scholar
  22. Lacey, A.J. (1989). Light Microscopy in Biol. ogy; A Practical Approach. IRL Press, Oxford.Google Scholar
  23. Lucosz, W. (1966). J. Opt. Soc. Am. 56, 1463.CrossRefGoogle Scholar
  24. Moss, R.A. and Loomis, W.E. (1952). Absorption spectra of leaves. I. The visible spectrum. Plant Physiol. 27, 370–391.PubMedCrossRefGoogle Scholar
  25. Pawley, J.B. (1995). Light paths of current commercial confocal light microscopes for biology. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 581–598. Plenum Press, New York.Google Scholar
  26. Rigaut, J.P. and Vassey, J. (1991). High resolution three-dimensional images from confocal scanning laser microscopy. Quantitative study and mathematical correction of the effects due to bleaching and fluorescence attenuation in depth. Anal. Quant. Cytol. Histol. 13, 223–232.PubMedGoogle Scholar
  27. Sandison, D.R., Williams, R.M., Wells, K.S., Strickler, J. and Webb, W.W. (1995). Quantitative fluorescence confocal laser scanning microscopy (CLSM). Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 39–54. Plenum Press, New York.CrossRefGoogle Scholar
  28. Shaw, P., J. (1995). Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 373–388. Plenum Press, New York.CrossRefGoogle Scholar
  29. Shotton, D.M. (1989). Review: Confocal scanning optical microscopy and its applications for biological specimens. J. Cell Sci. 94, 175–206.Google Scholar
  30. Tao, L. and Nicholson, C. (1995). The three dimensional point spread functions of a microscope objective in image and object space. J. Microsc. 178, 267–271.PubMedCrossRefGoogle Scholar
  31. Taylor, D., L-and Wang, Y.-L. (1989a). Fluorescent Analogues, Labelling Cells and Basic Microscopy. in: Methods in Cell Biol. ogy Vol.29. Acad. Press, London.Google Scholar
  32. Taylor, D., L-and Wang, Y.-L. (1989b). Quantitative Fluorescence Microscopy-Imaging and Spectroscopy. in: Methods in Cell Biol. ogy Vol.30. Acad. Press, London.Google Scholar
  33. Verbeek, P., W. and van Vliet, L. J. (1994). On the location of curved edges in low-pass filtered 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine Vision. 16(7), 726–733.CrossRefGoogle Scholar
  34. Verbelen, J.P. and Stickens, D. (1994). In vivo determination of fibre orientation in plant cell walls with polarisation CSLM. J. Microsc. 177, 1–6.CrossRefGoogle Scholar
  35. Visser, T.D., Groen, F.C.A., Brakenhoff, G.J., 1991, Absorption and scaterring correction in fluorescence confocal microscopy. J. Microsc. 163, 189–200.CrossRefGoogle Scholar
  36. Visser, T.D., Oud, J.L. and Brakenhoff, G.J., 1992, Refractive index and axial distance measurements in 3-D microscopy. Optik. 90, 17–19.Google Scholar
  37. van Vliet, L.J. (1993). PhD thesis: Gray-Scale Measurements in Multi-Dimensional digitized Images. Delft University Press, Delft.Google Scholar
  38. Weyers, J.D.B. and Travis, A.J. (1981). Selection and preparation of leaf epidermis for experiments on stomatal physiology. J. Exp. Bot. 32, 837–850.CrossRefGoogle Scholar
  39. White, N.S. (1995). Visualisation systems for multidimensional CLSM images. Handbook of Biological Confocal Microscopy, Second Edition (Ed. J.B. Pawley). pp 211–254. Plenum Press, New York.CrossRefGoogle Scholar
  40. White, N.S., Errington, R.J., Flicker, M.D. and Wood, J.L. (1995). Aberration control in quantitative imaging of botanical specimens by multi-dimensional fluorescence microscopy. J. Microsc in press.Google Scholar
  41. Wilson, T. (1990). Confocal microscopy. Academic Press, London.Google Scholar
  42. Wilson, T. and Sheppard, C.J.R. (1984). Theory and Practice of Scanning Optical Microscopy. Acad. Press, New York.Google Scholar
  43. Wooley, J.T. (1971). Reflectance and transmittance of light by leaves. Plant Physiol. 47, 656–662.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • N. S. White
    • 1
  • R. J. Errington
    • 2
  • M. D. Fricker
    • 1
  • J. L. Wood
    • 1
  1. 1.Plant Sciences DepartmentOxford UniversityOxfordUK
  2. 2.Physiology DepartmentOxford UniversityOxfordUK

Personalised recommendations