Virus-Receptor Interactions in the Enteric Tract

Virus-Receptor Interactions
  • K. V. Holmes
  • D. B. Tresnan
  • B. D. Zelus
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 412)


Expression of specific virus receptors on the surface of intestinal epithelial cells or M cells can determine whether or not a animal is susceptible to infection with an enterotropic virus. Receptors for many animal viruses have been identified. The specificity of virus-receptor interactions clearly affects the species specificity of virus infection, and in some instances may be an important determinant of viral tissue tropism. In this paper, the specificity of coronavirus-receptor interactions is summarized. Porcine and human coronaviruses utilize aminopeptidase N as their receptors, but in a species-specific manner. Mouse hepatitis virus uses several rodent glycoproteins in the carcinoembryonic antigen family as receptors. In addition, some coronaviruses can interact with carbohydrate moieties on the cell surface. Understanding the molecular mechanisms of virus-receptor interactions may lead to development of novel strategies for the control of enteric viral diseases.


Enteric Virus Neuraminic Acid Mouse Hepatitis Virus Intestinal Brush Border Membrane Transmissible Gastroenteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bergelson, J.M., Chan, M., Solomon, K.R., St.John, N.F., Lin, H. & Finberg, R.W. 1994. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Natl. Acad. Sci. U. S. A. 91, 6245–6249.Google Scholar
  2. Bergelson, J.M., Mohanty, J.G., Crowell, R.L., St.John, N.F., Lublin, D.M. & Finberg, R.W. 1995. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J. Virol. 69, 1903–1906.PubMedGoogle Scholar
  3. Berinstein, A., Roivainen, M., Novi, T., Mason, P.W. & Baxt, B. 1995. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J. Virol. 69, 2664–2666.PubMedGoogle Scholar
  4. Boyle, J.F., Weismiller, D.G. & Holmes, K.V. 1987. Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues. J. Virol 61, 185–189.PubMedGoogle Scholar
  5. Brown, K.E., Young, N.S. & Liu, J.M. 1994. Molecular, cellular and clinical aspects of parvovirus B19 infection. Crit. Rev. Oncol. Hematol. 16, 1–31.CrossRefPubMedGoogle Scholar
  6. Chen, D.S., Asanaka, M., Yokomori, K., Wang, F.-I., Hwang, S.B., Li, H.-P. & Lai, M.M.C. 1995. A pregnancy-specific glycoprotein is expressed in the brain and serves as a receptor for mouse hepatitis virus. Proc. Natl. Acad. Sci. USA 92, 12095–12099.CrossRefPubMedGoogle Scholar
  7. Clarkson, N.A., Kaufman, R., Lublin, D.M., Ward, T., Pipkin, P.A., Minor, P.D., Evans, D.J. & Almond, J.W. 1995. Characterization of the echovirus 7 receptor: domains of CD55 critical for virus binding. J. Virol. 69, 5497–5501.PubMedGoogle Scholar
  8. Colston, E. & Racaniello, V.R. 1994. Soluble receptor-resistant poliovirus mutants identify surface and internal capsid residues that control interaction with the cell receptor. EMBO J. 13, 5855–5862.PubMedGoogle Scholar
  9. Compton, S.R., Stephensen, C.B., Snyder, S.W., Weismiller, D.G. & Holmes, K.V. 1992. Coronavirus species specificity: murine coronavirus binds to a mouse-specific epitope on its carcinoembryonic antigen-related receptor glycoprotein. J. Virol. 66, 7420–7428.PubMedGoogle Scholar
  10. Compton, T., Nowlin, D.M. & Cooper, N.R. 1993. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology. 193, 834–841.CrossRefPubMedGoogle Scholar
  11. Coutelier, J.-R., Godfraind, C., Dveksler, G.S., Wysocka, M., Cardellichio, C.B., Noel, H. & Holmes, K.V. 1994. B lymphocyte_ and macrophage expression of carcinoembryonic antigen-related adhesion molecules that serve as receptors for murine coronavirus. Europ. J. lmmunol. 24, 1383–1390.CrossRefGoogle Scholar
  12. Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L.K., Sjöström, H., Norën, O. & Laude, H. 1992. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357, 417–420.Google Scholar
  13. Delmas, B. & Laude, H. 1990. Assembly of coronavirus spike protein into [rimers and its role in epitope expression. J. Virol. 64, 5367–5375.PubMedGoogle Scholar
  14. Dveksler, G.S., Basile, A.B., Cardellichio, C.B. & Holmes, K.V. 1995. Mouse hepatitis virus receptor activities of an MHVR/mph chimera and MHVR mutants lacking N-linked glycosylation of the N-terminal domain. J. Virol. 69, 543–546.PubMedGoogle Scholar
  15. Dveksler, G.S., Dieffenbach, C.W., Cardellichio, C.B., McCuaig, K., Pensiero, M.N., Jiang, G.S., Beauchemin, N. & Holmes, K.V. 1993. Several members of the mouse CEA-related glycoprotein family are functional receptors for murine coronavirus MHV-A59. J. Virol. 67, 1–8.PubMedGoogle Scholar
  16. Dveksler, G.S., Pensiero, M.N., Cardellichio, C.B., Williams, R.K., Jiang, G.S., Holmes, K.V. & Dieffenbach, C.W. 1991. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol. 65, 6881–6891.PubMedGoogle Scholar
  17. Dveksler, G.S., Pensiero, M.N., Dieffenbach, C.W., Cardellichio, C.B., Basile, A.A., Elia, P.E. & Holmes, K.V. 1993. Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc. Natl. Acad. Sci U. S. A. 90, 1716–1720.CrossRefPubMedGoogle Scholar
  18. Fenner, F. & Woodroofe, B.M. 1965. Changes in the virulence and antigenic structure of strains of myxoma virus recovered from Australian wild rabbits between 1950 and 1964. Aust. J. Exp. Biol. Med. Sci. 43, 359.CrossRefPubMedGoogle Scholar
  19. Gagneten, S., Gout, O., Dubois-Dalcq, M., Rottier, P., Rossen, J. & Holmes, K.V. 1995. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J. Virol. 69, 889–895.PubMedGoogle Scholar
  20. Godet, M., Grosclaude, J., Delmas, B. & Laude, H. 1994. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J. Virol. 68, 8008–8016.PubMedGoogle Scholar
  21. Godfraind, C., Langreth, S.G., Cardellichio, C.B., Knobler, R., Coutelier, J.P., Dubois-Dalcq, M. & Holmes, K.V. 1995. Tissue and cellular distribution of an adhesion molecule in the carcinoembryonic antigen family that serves as a receptor for mouse hepatitis virus. Lab. Invest. 73, 615–627.PubMedGoogle Scholar
  22. Holmes, K.V. & Lai, M.M.C. 1996. Coronaviridae and their replication. In Virology, Edition 3 ( Fields, B.N., ed.), Raven Press, New York, pp. 1075–1093.Google Scholar
  23. Huang, J.Q., Turbide, C., daniels, E., Jothy, S. & Beauchemin, N. 1990. Spatiotemporal expression of murine carcinoembryonic antigen (CEA) gene family members during mouse embryogenesis. Development 110, 573–588.PubMedGoogle Scholar
  24. Koike, S., Horie, H., Ise, I., Okitsu, A., Yoshida, M., lizuka, N., Takeuchi, K., Takegami, T. & Nomoto, A. 1990. The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 9, 3217–3224.Google Scholar
  25. Mendelsohn, C.L., Wimmer, E. & Racaniello, V.R. 1989. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56, 855–865.CrossRefPubMedGoogle Scholar
  26. Nedellec, P., Dveksler, G.S., Daniels, E., Turbide, C., Chow, B., Basile, A.A., Holmes, K.V. & Beauchemin, N. 1994. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J. Virol. 68, 4525–4537.PubMedGoogle Scholar
  27. Parrish, C.R. 1991. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology 183, 195–205.CrossRefPubMedGoogle Scholar
  28. Roivainen, M., Piirainen, L., Hovi, T., Virtanen, 1., Riikonen, T., Heino, J. & Hyypia, T. 1994. Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology. 203, 357–365.Google Scholar
  29. Rolsma, M.D., Gelberg, H.B. & Kuhlenschmidt, M.S. 1994. Assay for evaluation of rotavirus-cell interactions: Identification of an enterocyte ganglioside fraction that mediates group A rotavirus recognition. J. Virol. 68, 258.PubMedGoogle Scholar
  30. Schultze, B., Enjuanes, L., Cavanagh, D. & Herrler, G. 1993. N-acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus. Adv. Exp. Med. Biol. 342, 305–310.CrossRefPubMedGoogle Scholar
  31. Schultze, B., Gross, H.J., Brossmer, R. & Herrler, G. 1991. The S protein of bovine coronavirus is a hemagglutinin recognizing 9–0-acetlyated sialic acid as a receptor determinant. J. Virol. 65, 6232–6237.PubMedGoogle Scholar
  32. Schultze, B. & Herrler, G. 1993. Recognition of N-acetyl-9-O-acetylneuraminic acid by bovine coronavirus and hemagglutinating encephalomyelitis virus. Adv. Exp. Med. Biol. 342, 299–304.CrossRefPubMedGoogle Scholar
  33. Schultze, B. & Herrler, G. 1994. Recognition of cellular receptors by bovine coronavirus. Arch. Viro!. Suppl. 9, 451–459.Google Scholar
  34. Shafren, D.R., Bates, R.C., Agrez, M.V., Herd, R.L., Burns, G.F. & Barry, R.D. 1995. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J. Virol. 69, 3873–3877.PubMedGoogle Scholar
  35. Smith, A.L., Cardellichio, C.B., Winograd, D.F., deSouza, M.S., Barthold, S.W. & Holmes, K.V. 1991. Monoclonal antibody to the receptor for murine coronavirus MHV- A59 inhibits virus replication in vivo. J. Infect. Dis. 163:879–882 1991Google Scholar
  36. Soderberg, C., Giugni, T.D., Zaia, J.A., Larsson, S., Wahlberg, J.M. & Moller, E. 1993. CD13 (human aminopeptidase N) mediates human cytomegalovirus infection. J. Viro!. 67, 6576–6585.Google Scholar
  37. Taguchi, F. 1995. The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding. J. Viro!. 69, 7260–7263.Google Scholar
  38. Vlasak, R., Luytjes, W., Leider, J., Spaan, W. & Palese, P. 1988a. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 62, 4686–4690.PubMedGoogle Scholar
  39. Vlasak, R., Luytjes, W., Spaan, W. & Palese, P. 1988b. Human and bovine coronaviruses recognize sialic acid-con- taining receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. U. S. A. 85, 4526–4529.CrossRefPubMedGoogle Scholar
  40. Ward, T., Pipkin, P.A., Clarkson, N.A., Stone, D.M., Minor, P.D. & Almond, J.W. 1994. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 13, 5070–5074.PubMedGoogle Scholar
  41. Williams, R.K., Jiang, G.-S., Snyder, S.W., Frana, M.F. & Holmes, K.V. 1990. Purification of the l l0-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a nonfunctional, homologous protein in MHV- resistant SJL/J mice. J. Virol 64, 3817–3823.PubMedGoogle Scholar
  42. Williams, R.K., Jiang, G.S. & Holmes, K.V. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. U. S. A. 88, 5533–5536.CrossRefPubMedGoogle Scholar
  43. Wykes, M.N., Shellam, G.R., McCluskey, J., Kast, W.M., Dallas, P.B. & Price, P. 1993. Murine cytomegalovirus interacts with major histocompatibility complex class I molecules to establish cellular infection. J. Virol. 67, 4182–4189.PubMedGoogle Scholar
  44. Xu, R., Mohanty, J.G. & Crowell, R.L. 1995. Receptor proteins on newborn Balb/c mouse brain cells for coxsackievirus B3 are immunologically distinct from those on HeLa cells. Virus. Res. 35, 323–340.CrossRefPubMedGoogle Scholar
  45. Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T. & Holmes, K. V. 1992.Google Scholar
  46. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 357, 420–422.Google Scholar
  47. Yokomori, K., Asanaka, M., Stohlman, S.A. & Lai, M.M. 1993. A spike protein-dependent cellular factor other than the viral receptor is required for mouse hepatitis virus entry. Virology. 196, 45–56.CrossRefPubMedGoogle Scholar
  48. Yokomori, K. & Lai, M.M. 1992a. The receptor for mouse hepatitis virus in the resistant mouse strain SJL is func- tional: implications for the requirement of a second factor for viral infection. J. Virol. 66, 6931–6938.PubMedGoogle Scholar
  49. Yokomori, K. & Lai, M.M.C. 1992b. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J. Virol. 66, 6194–6199.PubMedGoogle Scholar
  50. Yokomori, K., Stohlman, S.A. & Lai, M.M. 1993. The detection and characterization of multiple hemagglutininesterase (HE)-defective viruses in the mouse brain during subacute demyelination induced by mouse hepatitis virus. Virology. 192, 170–178.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. V. Holmes
    • 1
  • D. B. Tresnan
    • 1
  • B. D. Zelus
    • 1
  1. 1.Department of MicrobiologyUniversity of Colorado Health Sciences CenterDenverUSA

Personalised recommendations