Advertisement

Antioxidant Chemistry of α-Tocopherol in Biological Systems

Roles of Redox Cycles and Metabolism
  • Daniel C. Liebler
Part of the Subcellular Biochemistry book series (SCBI, volume 30)

Abstract

Vitamin E is the family name given to a group of tocopherols and tocotrienols that function as the principal lipid-soluble chain-breaking antioxidants in biological membranes and lipoproteins. α-Tocopherol (1) and, to a lesser extent, λ-tocopherol (2) constitute an essential component of cellular defense against endogenous and exogenous oxidants.

Keywords

Reactive Nitrogen Species Peroxyl Radical Nitrogen Dioxide Redox Cycle Quinone Oxidoreductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisby, R. H., and Parker, A. W., 1995, Reaction of ascorbate with the a-tocopheroxyl radical in micellar and bilayer membrane systems, Arch. Biochem. Biophys. 317:170–178.PubMedCrossRefGoogle Scholar
  2. Bowry, V. W., and Stocker, R., 1993, Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein, J. Am. Chem. Soc. 115:6029–6044.CrossRefGoogle Scholar
  3. Bowry, V. W., Mohr, D., Cleary, J., and Stocker, R., 1995, Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein, J. Biol. Chem. 270:5756–5763.PubMedCrossRefGoogle Scholar
  4. Burton, G. W., and Ingold, K. U., 1981, Autoxidation of biological molecules. 1. The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro, J. Am. Chem. Soc. 103:6472–6477.CrossRefGoogle Scholar
  5. Burton, G. W., and Ingold, K. U., 1986, Vitamin E: Application of the principles of physical organic chemistry to the exploration of its structure and function, Acc. Chem. Res. 19:194–201.CrossRefGoogle Scholar
  6. Burton, G. W., Doba, T., Gabe, E. J., Hughes, L., Lee, F. L., Prasad, L., and Ingold, K. U., 1985, Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols, J. Am. Chem. Soc. 107:7053–7065.CrossRefGoogle Scholar
  7. Burton, G. W., Wronska, U., Stone, L., Foster, D. O., and Ingold, K. U., 1990, Biokinetics of dietary RRR-alpha-tocopherol in the male guinea pig at three dietary levels of vitamin C and two levels of vitamin E. Evidence that vitamin C does not “spare” vitamin E in vivo, Lipids 25:199–210.PubMedCrossRefGoogle Scholar
  8. Chan, A. C., Tran, K., Raynor, T., Ganz, P. R., and Chow, C. K., 1991, Regeneration of vitamin E in human platelets, J. Biol Chem. 266:17290–17295.PubMedGoogle Scholar
  9. Chow, C. K., Draper, H. H., Csallany, A. S., and Chiu, M., 1967, The metabolsim of C14-alpha-tocopheryl quinone and C14-alpha-tocopheryl hydroquinone, Lipids 2:390–396.PubMedCrossRefGoogle Scholar
  10. Christen, S., Woodall, A. A., Shigenaga, M. K., Southwell-Keely, P. T., Duncan, M. W., and Ames, B. N., 1997, gamma-Tocopherol traps mutagenic electrophiles such as NOX and complements α-tocopherol: Physiological implications, Proc. Natl. Acad. Sci. USA 94:3217–3222.PubMedCrossRefGoogle Scholar
  11. Clough, R. L., Yee, B. G., and Foote, C. S., 1979, Chemistry of singlet oxygen. 30. The unstable primary product of tocopherol photooxidation, J. Am. Chem. Soc. 101:683–686.CrossRefGoogle Scholar
  12. Cooney, R. V., Harwood, P. J., Franke, A. A., Narala, K., Sundstrom, A. K., Berggren, P. O., and Mordan, L. J., 1995, Products of gamma-tocopherol reaction with NO2 and their formation in rat insulinoma (RINm5F) cells, Free Radic. Biol. Med. 19:259–269.PubMedCrossRefGoogle Scholar
  13. Csallany, A. S., and Ha, Y. L., 1992, α-Tocopherol oxidation mediated by Superoxide anion. I. Reactions in aprotic and protic conditions, Lipids 27:195–200.PubMedCrossRefGoogle Scholar
  14. d’Ischia, M., and Novellino, L., 1996, Nitric oxide-induced oxidation of α-tocopherol, Bioorg. Med. Chem. 4:1747–1753.PubMedCrossRefGoogle Scholar
  15. d’Ischia, M., Costantini, C., and Prota, G., 1991, Dye-sensitized photooxidation of vitamin E revisited. New 7-oxaspiro[4.5]dec-1-ene-3,6-dione products by oxygenation and ring contraction of α-tocopherol, J. Am. Chem. Soc. 113:8353–8356.CrossRefGoogle Scholar
  16. de Groot, H., Hegi, U., and Sies, H., 1993, Loss of α-tocopherol upon exposure to nitric oxide or the syndonimine SIN-1, FEBS Lett. 315:139–142.PubMedCrossRefGoogle Scholar
  17. Dix, T. A., and Marnett, L. J., 1985, Conversion of linoleic acid hydroperoxide to hydroxy, keto, epoxyhydroxy, and trihydroxy fatty acids by hematin, J. Biol. Chem. 260:5351–5357.PubMedGoogle Scholar
  18. Durckheimer, W., and Cohen, L. A., 1964, The chemistry of 9-hydroxy-alpha-tocopherone, a quinone hemiacetal, J. Am. Chem. Soc. 86:4388–4393.CrossRefGoogle Scholar
  19. Fukuzawa, K., Ikebata, W., and Sohmi, K., 1993, Location, antioxidant and recycling dynamics of α-tocopherol in liposome membranes, J. Nutr. Sci. Vitaminol. 39:S9–S22.PubMedCrossRefGoogle Scholar
  20. Giamvala, D. H., Church, D. F., and Pryor, W. A., 1986, Kinetics of ozonation. 4. Reactions of ozone with alpha-tocopherol and oleate and linoleate esters in carbon tetrachloride and in aqueous micellar solvents, J. Am. Chem. Soc. 108:6646–6651.CrossRefGoogle Scholar
  21. Glascott, P. A., Tsyganskaya, M., Gilfor, E., Zern, M., and Farber, J. L., 1996, The antioxidant function of the physiological content of vitamin C, Mol. Pharmacol. 50:994–999.PubMedGoogle Scholar
  22. Gorbunov, N. V., Osipov, A. N., Sweetland, M. A., Day, B. W., Elsayed, N. M., and Kagan, V. E., 1997, NO-redox paradox: Direct oxidation of α-tocopherol and α-tocopherol mediated oxidation of ascorbate, Biochem. Biophys. Res. Commun. 219:835–841.CrossRefGoogle Scholar
  23. Grams, G. W., Eskins, K., and Inglett, G. E., 1971, Dye-sensitized photooxidation of alpha-tocopherol, J. Am. Chem. Soc. 93:866–868.Google Scholar
  24. Ha, Y. L., and Csallany, A. S., 1992, α-Tocopherol oxidation mediated by Superoxide anion. II. Identification of stable α-tocopheroi oxidation products, Lipids 27:201–205.PubMedCrossRefGoogle Scholar
  25. Ham, A. J. L., and Liebler, D. C., 1995, Vitamin E oxidation in rat liver mitochondria, Biochemistry 34:5754–5761.PubMedCrossRefGoogle Scholar
  26. Ham, A. J. L., and Liebler, D. C., 1997, Antioxidant reactions of vitamin E in the perfused rat liver: Product distribution and effect of dietary vitamin E supplementation, Arch. Biochem. Biophys. 339:157–164.PubMedCrossRefGoogle Scholar
  27. Hayashi, T., Kanetoshi, A., Nakamura, M., Tamura, M., and Shirahama, H., 1992, Reduction of α-tocopherolquinone to α-tocopherolhydroquinone in rat hepatocytes, Biochem. Pharmacol. 44:489–493.PubMedCrossRefGoogle Scholar
  28. Hogg, N., Darley-Usmar, V. M., Wilson, M. T., and Moncada, S., 1993, The oxidation of α-tocopherol in human low density lipoprotein by the simultaneous generation of superoxide and nitric oxide, FEBS Lett. 326:199–203.PubMedCrossRefGoogle Scholar
  29. Hogg, N., Joseph, J., and Kalyanaraman, B., 1994, The oxidation of α-tocopherol and Trolox by peroxynitrite, Arch. Biochem. Biophys. 314:153–158.PubMedCrossRefGoogle Scholar
  30. Hogg, N., Singh, R. J., Goss, P., and Kalyanaraman, B., 1996, The reaction between nitric oxide and α-tocopherol: A reappraisal, Biochem. Biophys. Res. Commun. 224:696–702.PubMedCrossRefGoogle Scholar
  31. Hoglen, N. C., Waller, S. C., Sipes, I. G., and Liebler, D. C., 1997, Reactions of peroxynitrite with gamma-tocopherol, Chem. Res. Toxicol. 10:401–407.PubMedCrossRefGoogle Scholar
  32. Kagan, V., Serbinova, E., and Packer, L., 1990a, Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling, Biochem. Biophys. Res. Commun. 169:851–857.PubMedCrossRefGoogle Scholar
  33. Kagan, V. E., Serbinova, E. A., and Packer, L., 1990b, Recycling and antioxidant activity of tocopherol homologs of differing hydrocarbon chain lengths in liver microsomes, Arch. Biochem. Biophys. 282:221–225.PubMedCrossRefGoogle Scholar
  34. Kaiser, S., Di Mascio, P., Murphy, M. E., and Sies, H., 1990, Physical and chemical scavenging of singlet molecular oxygen by tocopherols, Arch. Biochem. Biophys. 277:101–108.PubMedCrossRefGoogle Scholar
  35. Kohar, I., Baca, M., Suarna, C., Stocker, R., and Southwell-Keely, P. T., 1995, Is α-tocopherol a reservoir for α-tocopherolhydroquinone? Free Radic. Biol. Med. 19:197–207.PubMedCrossRefGoogle Scholar
  36. Kramer, K. A., and Liebler, D. C., 1997, UVB induced photooxidation of vitamin E, Chem. Res. Toxicol. 10:219–224.PubMedCrossRefGoogle Scholar
  37. Liebler, D. C., 1993, The role of metabolism in the antioxidant function of vitamin E, Crit. Rev. Toxicol. 23:147–169.PubMedCrossRefGoogle Scholar
  38. Liebler, D. C., 1994, Tocopherone and epoxytocopherone products of vitamin E oxidation, Meth. Enzymol. 234:310–316.PubMedCrossRefGoogle Scholar
  39. Liebler, D. C., and Burr, J. A., 1992, Oxidation of vitamin E during iron-catalyzed lipid peroxidation: Evidence for electron-transfer reactions of the tocopheroxyl radical, Biochemistry 31:8278–8284.PubMedCrossRefGoogle Scholar
  40. Liebler, D. C., and Burr, J. A., 1995, Antioxidant stoichiometry and the oxidative fate of vitamin E in peroxyl radical scavenging reactions, Lipids 30:789–793.PubMedCrossRefGoogle Scholar
  41. Liebler, D. C., Kaysen, K. L., and Kennedy, T. A., 1989, Redox cycles of vitamin E: Hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)tocopherones, Biochemistry 28:9772–9777.PubMedCrossRefGoogle Scholar
  42. Liebler, D. C., Baker, P. F., and Kaysen, K. L., 1990, Oxidation of vitamin E: Evidence for competing autoxidation and peroxyl radical trapping reactions of the tocopheroxyl radical, J. Am. Chem. Soc. 112:6995–7000.CrossRefGoogle Scholar
  43. Liebler, D. G., Kaysen, K. L., and Burr, J. A., 1991, Peroxyl radical trapping and autoxidation reactions of alpha-tocopherol in lipid bilayers, Chem. Res. Toxicol. 4:89–93.PubMedCrossRefGoogle Scholar
  44. Liebler, D. C., Matsumoto, S., Iltaka, Y., and Matsuo, M., 1993, Reactions of vitamin E and its model compound 2,2,5,7,8-pentamethylchroman-6-ol with ozone, Chem. Res. Toxicol. 6:69–74.PubMedCrossRefGoogle Scholar
  45. Liebler, D. C., Burr, J. A., Philips, L., and Ham, A. J. L., 1996, Gas chromatography-mass spectrometry analysis of vitamin E and its oxidation products, Anal. Biochem. 236:27–34.PubMedCrossRefGoogle Scholar
  46. Mackenzie, J. B., and Mackenzie, C. G., 1958, The effect of α-tocopherol, α-tocopherylhydroquinone and their esters on experimental muscular dystrophy in the rat, J. Nutr. 67:223–235.Google Scholar
  47. Mackenzie, J. B., and Mackenzie, C. G., 1960, The antisterility activity of alpha-tocohydroquinone in the female rat, J. Nutr. 72:322–324.PubMedGoogle Scholar
  48. Maiorino, M., Coassin, M., Roveri, A., and Ursini, F., 1989, Microsomal lipid peroxidation: Effect of vitamin E and its functional interaction with phospholipid hydroperoxide glutathione peroxidase, Lipids 24:721–726.PubMedCrossRefGoogle Scholar
  49. Matsuo, M., Matsumoto, S., and Iltaka, Y., 1987, Oxygenations of vitamin E (alpha-tocopherol) and its model compound 2,2,5,7,8-pentamethylchroman-6-ol in the presence of the Superoxide radical solubilized in aprotic solvents: Unique epoxidations and recyclizations, J. Org. Chem. 52:3514–3520.CrossRefGoogle Scholar
  50. Matsuo, M., Matsumoto, S., Iltaka, Y., and Niki, E., 1989, Radical scavenging reactions of vitamin E and its model compound, 2,2,5,7,8-pentamethylchroman-6-ol, in a tertbutylperoxyl radical generating system, J. Am. Chem. Soc. 111:7179–7185.CrossRefGoogle Scholar
  51. Mehlhorn, R. J., Sumida, S., and Packer, L., 1989, Tocopheroxyl radical persistence and tocopherol consumption in liposomes and in vitamin E-enriched rat liver mitochondria and microsomes, J. Biol. Chem. 264:13448–13452.PubMedGoogle Scholar
  52. Miyazawa, T., Yamashita, T., and Fujimoto, K., 1992, Chemiluminescence detection of 8a-hydroperoxytocopherone in photooxidized α-tocopherol, Lipids 27:289–294.PubMedCrossRefGoogle Scholar
  53. Moore, A. N. J., and Ingold, K. U., 1997, α-Tocopheryl quinone is converted into vitamin E in man, Free Radic. Biol. Med. 22:931–934.PubMedCrossRefGoogle Scholar
  54. Nishikimi, M., Yamada, H., and Yagi, K., 1980, Oxidation by Superoxide of tocopherols dispersed in aqueous media with deoxycholate, Biochim. Biophys. Acta 627:101–108.PubMedCrossRefGoogle Scholar
  55. Packer, J. E., Slater, T. F., and Willson, R. L., 1979, Direct observation of a free radical interaction between vitamin E and vitamin C., Nature 278:737–738.PubMedCrossRefGoogle Scholar
  56. Packer, L., and Kagan, V. E., 1993, Vitamin E: The antioxidant harvesting center of membranes and lipoproteins, in Vitamin E in Health and Disease (L. Packer and J. Fuchs, eds.), pp. 179–192, Marcel Dekker, New York.Google Scholar
  57. Siegel, D., Bolton, E. M., Burr, J. A., Liebler, D. C., and Ross, D., 1997, The reduction of α-tocopherolquinone by human NAD(P)H:quinone oxidoreductase: The role of α-tocopherolhydroquinone as a cellular antioxidant, Mol. Pharmacol. 52:300–305.PubMedGoogle Scholar
  58. Skinner, W. A., and Alqaupovic, P., 1963, Oxidation products of vitamin E and its model 6-hydroxy-2,2,5,7,8-pentamethylchroman. V. Studies of the products of alkaline ferricyanide oxidation, J. Org. Chem. 28:2854–2858.CrossRefGoogle Scholar
  59. Suarna, C., and Southwell-Keely, P. T., 1988, New oxidation products of alpha-tocopherol, Lipids 23:137–139.CrossRefGoogle Scholar
  60. Suarna, C., Craig, D. C., Cross, K. J., and Southwell-Keely, P. T., 1988, Oxidations of vitamin E (alpha-tocopherol) and its model compound 2,2,5,7,8-pentamethyl-6-hydroxychroman. A new dimer, J. Org. Chem. 53:1281–1284.CrossRefGoogle Scholar
  61. Suarna, C., Baca, M., and Southwell-Keely, P. T., 1992, Oxidation of the α-tocopherol model compound 2,2,5,7,8-pentamethyl-6-chromanol in the presence of alcohols, Lipids 27:447–453.CrossRefGoogle Scholar
  62. Winterle, J., Dulin, D., and Mill, T., 1984, Products and stoichiometry of reaction of vitamin E with alkylperoxy radicals, J. Org. Chem. 49:491–495.CrossRefGoogle Scholar
  63. Yamauchi, R., Matsui, T., Kato, K., and Ueno, Y., 1989a, Reaction of alpha-tocopherol with 2,2′-azobis(2,4-dimethylvaleronitrile) in benzene, Agric. Biol. Chem. 12:3257–3262.CrossRefGoogle Scholar
  64. Yamauchi, R., Matsui, T., Satake, Y., Kato, K., and Ueno, Y., 1989b, Reaction products of alpha-tocopherol with a free radical initiator, 2,2′-azobis(2,4-dimethylvaleronitrile), Lipids 24:204–209.PubMedCrossRefGoogle Scholar
  65. Yamauchi, R., Matsui, T., Kato, K., and Ueno, Y., 1990, Reaction products of α-tocopherol with methyl linoleate-peroxyl radicals, Lipids 25:152–158.CrossRefGoogle Scholar
  66. Yamauchi, R., Yagi, Y., and Kato, K., 1994, Isolation and characterization of addition products of α-tocopherol with peroxyl radicals of dilinoleoylphosphatidylcholine in liposomes, Biochim. Biophys. Acta 1212:43–49.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Daniel C. Liebler
    • 1
  1. 1.Department of Pharmacology and Toxicology, College of PharmacyUniversity of ArizonaTucsonUSA

Personalised recommendations