Advertisement

Abstract

Fungi which have yeastlike growth have considerable advantages for genetic studies over filamentous fungi. The replica plating of colonies with velvet greatly simplifies the isolation of many types of mutants and the classification of the phenotypes of the progeny of crosses. In addition, the growth of single, uninucleate cells in liquid media facilitates many physiological and biochemical experimental procedures. A particular reason for choosing a yeastlike smut fungus of the genus Ustilago was the number of reports in the literature that the haploid chromosome number was two; this would have been a considerable advantage for genetic studies. However, subsequent genetic analysis in Ustilago maydis and Ustilago violacea has shown that these cytological reports are untrue. In the latter species at least ten linkage groups have been identified (Day and Jones, 1969). Although the vegetative cells grow vigorously on synthetic media, the sexual stage of smut fungi is parasitic. U. maydis (De Candolle) Corda was chosen for detailed studies because a few days after infection it produces diploid teliospores (brandspores) in vegetative parts of the host Zea mays, and the life cycle is completed in less than two weeks. Many other species produce teliospores only in the inflorescence of the host, many weeks or months after inoculation.

Keywords

Nitrate Reductase Growth Requirement Pyrimidine Dimer Restrictive Temperature Diploid Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Badman, R., 1972 Deoxyribonuclease-deficient mutants of Ustilago maydis with altered recombination frequencies. Genet. Res. 20:213–229.CrossRefGoogle Scholar
  2. Banks, G. R., 1973 Mitochondrial DNA synthesis in permeable cells. Nat. New Biol. 245:196–198.PubMedCrossRefGoogle Scholar
  3. Bevan, E. A. and J. M. Sommers, 1969 Somatic segregation of the killer (k) and neutral (n) cytoplasmic determinants in yeast. Genet. Res. 14:71–77.PubMedCrossRefGoogle Scholar
  4. Day, A. W. and J. K. Jones, 1969 Sexual and parasexual analysis of Ustilago violacea. Genet. Res. 14:195–221.PubMedCrossRefGoogle Scholar
  5. Day, P. R. and S. L. Anagnostakis, 1971a Corn smut dikaryon in culture. Nat. New Biol. 231:19–20.PubMedCrossRefGoogle Scholar
  6. Day, P. R. and S. L. Anagnostakis, 1971b Meiotic products from natural infections of Ustilago maydis. Phytopathology 61:1020–1021.CrossRefGoogle Scholar
  7. Day, P. R. S. L. Anagnostakis and J. E. Puhalla, 1971 Pathogenicity resulting from mutation at the b locus of Ustilago maydis. Proc. Natl. Acad. Sci. USA 68:533–535.PubMedCrossRefGoogle Scholar
  8. Esposito, R. E. and R. Holliday, 1964 The effect of 5-fluorodeoxyuridine on genetic replication and mitotic crossing over in synchronized cultures of Ustilago maydis. Genetics 50:1009–1017.PubMedGoogle Scholar
  9. Holliday, R., 1961a The genetics of Ustilago maydis. Genet. Res. 2:204–230.CrossRefGoogle Scholar
  10. Holliday, R., 1961b Induced mitotic crossing-over in Ustilago maydis. Genet. Res. 2:231–248.CrossRefGoogle Scholar
  11. Holliday, R., 1962a Mutatation and replication in Ustilago maydis. Genet. Res. 3:472–486.CrossRefGoogle Scholar
  12. Holliday, R., 1962b Selection of auxotrophs by inositol starvation in Ustilago maydis. Microb. Genet. Bull. 18:28–30.Google Scholar
  13. Holliday, R., 1964 The induction of mitotic recombination by mitomycin C in Ustilago and Saccharomyces. Genetics 50:323–335.PubMedGoogle Scholar
  14. Holliday, R., 1965a Induced mitotic crossing-over in relation to genetic replication in synchronously dividing cells of Ustilago maydis. Genet. Res. 6:104–120.CrossRefGoogle Scholar
  15. Holliday, R., 1965b Radiation sensitive mutants of Ustilago maydis. Mutat. Res. 2:557–559.PubMedCrossRefGoogle Scholar
  16. Holliday, R., 1966 Studies on mitotic gene conversion in Ustilago. Genet. Res. 8:323–337.PubMedCrossRefGoogle Scholar
  17. Holliday, R., 1967 Altered recombination frequencies in radiation-sensitive strains of Ustilago. Mutat. Res. 4:275–288.PubMedCrossRefGoogle Scholar
  18. Holliday, R., 1969 Errors in protein synthesis and clonal senescence in fungi. Nature (Lond.) 221:1224–1228.CrossRefGoogle Scholar
  19. Holliday, R., 1971 Biochemical measure of the time and frequency of radiation-induced allelic recombination in Ustilago. Nature (Lond.) 232:233–236.CrossRefGoogle Scholar
  20. Holliday, R. and R. E. Halliwell, 1968 An endonuclease-deficient strain of Ustilago maydis. Genet. Res. 12:95–98.PubMedCrossRefGoogle Scholar
  21. Holliday, R. and M. A. Resnick, 1969 Components of the genetic repair mechanism are not confined to the nucleus. Nature (Lond.) 222:480–481.CrossRefGoogle Scholar
  22. Holliday, R., R. E. Halliwell, V. Rowell and M. W. Evans, 1974 Abnormal recombination in rec-1 strains of U. maydis. in preparation.Google Scholar
  23. Holloman, W. K., 1973 Studies on a nuclease from Ustilago maydis. II. Substrate specificity and mode of action of the enzyme. J. Biol. Chem. 248:8114–8119.PubMedGoogle Scholar
  24. Holloman, W. K. and R. Holliday, 1973 Studies on a nuclease from Ustilago maydis. I. Purification, properties and implication in recombination of the enzyme. J. Biol. Chem. 248:8107–8113.PubMedGoogle Scholar
  25. Jeggo, P. A., P. Unrau, G. R. Banks and R. Holliday, 1973 A temperature sensitive DNA polymerase mutant of Ustilago maydis. Nat. New Biol. 242:14–15.PubMedCrossRefGoogle Scholar
  26. Lewis, C. M. and J. R. S. Fincham, 1970a Regulation of nitrate reductase in the basidiomycete Ustilago maydis. J. Bacteriol. 103:55–61.PubMedGoogle Scholar
  27. Lewis, C. M. and J. R. S. Fincham, 1970b Genetics of nitrate reductase in Ustilago maydis. Genet. Res. 16:151–163.CrossRefGoogle Scholar
  28. Lewis, C. M. and R. Holliday, 1971 Mistranslation and ageing in Neurospora. Nature (Lond.) 228:877–880.CrossRefGoogle Scholar
  29. Perkins, D. D., 1949 Biochemical mutants in the smut fungus Ustilago maydis. Genetics 34:607–626.PubMedGoogle Scholar
  30. Pontecorvo, G., 1953 The genetics of Aspergillus nidulans. Adv. Genet. 5:141–238.PubMedCrossRefGoogle Scholar
  31. Puhalla, J. E., 1968 Compatibility reactions on solid medium and interstrain inhibition in Ustilago maydis. Genetics 60:461–474.PubMedGoogle Scholar
  32. Puhalla, J. E. 1970 Genetic studies of the 6 incompatibility locus of Ustilago maydis. Genet. Res. 16:229–232.CrossRefGoogle Scholar
  33. Resnick, M. A. and R. Holliday, 1971 Genetic repair and the synthesis of nitrate reductase in Ustilago maydis after UV irradiation. Mol. Gen. Genet. 111:171–184.CrossRefGoogle Scholar
  34. Rowell, J. B., 1955 Functional role of compatibility factors and an in vitro test for sexual compatibility with haploid lines of Ustilago zeae. Phytopathology 45:370–374.Google Scholar
  35. Somers, J. M. and E. A. Bevan, 1969 The inheritance of the killer character in yeast. Genet. Res. 13:71–83.PubMedCrossRefGoogle Scholar
  36. Stakman, E. C., N. F. Kernkamp, H. K. Thomas and W. J. Martin, 1943 Genetic factors for mutability and mutant characters in Ustilago zeae. Am. J. Bot. 30:37–48.CrossRefGoogle Scholar
  37. Unrau, P., 1974 The excision of pyrimidine dimers in wild-type and mutant strains of U. maydis. in preparation.Google Scholar
  38. Unrau, P. and R. Holliday, 1970 A search for temperature-sensitive mutants of Ustilago maydis blocked in DNA synthesis. Genet. Res. 15:157–169.PubMedCrossRefGoogle Scholar
  39. Unrau, P. and R. Holliday, 1972 Recombination during blocked chromosome replication in temperature-sensitive strains of Ustilago maydis. Genet. Res. 19:145–155.CrossRefGoogle Scholar
  40. Unrau, P., R. Wheatcroft and B. S. Cox, 1972 Methods for the assay of ultraviolet light-induced pyrimidine dimers in Saccharomyces cerevisiae. Biochim. Biophys. Acta 269:311–321.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Robin Holliday
    • 1
  1. 1.National Institute for Medical ResearchMill Hill, LondonEngland

Personalised recommendations