The Role of Microbial Surface Polysaccharides in the Rhizobium-Legume Interaction

  • Karsten Niehaus
  • Anke Becker
Part of the Subcellular Biochemistry book series (SCBI, volume 29)


The symbiotic interaction between the soil bacteria classified as Rhizobium or Bradyrhizobium and members of the plant family Leguminosae enables the study of cell-to-cell recognition, signal exchange, and induced morphogenesis. Rhizobia are able to enter the plant root via a sophisticated infection mechanism, induce a new plant organ, the root nodule, and differentiate within the infected plant cells into nitrogen-fixing bacteroids which have properties of an endosymbiont (Hirsch, 1992). The establishment of this symbiosis is controlled by a complex network of signals which are produced by both the bacteria and the plant. In this review we would like to draw attention to the role and functions of rhizobial surface carbohydrates during the establishment of the symbiosis. Rhizobial cells are able to synthesize several surface carbohydrates: lipopolysaccharides (LPS) bound to the outer membrane of the cell, capsular polysaccharides (CPS) and 3-deoxy-D-manno-2-octulosonic acid (KDO)-rich polysaccharides (KPS) associated with the cell surface, and exopolysaccharides (EPS) secreted to the medium.


Root Hair Capsular Polysaccharide Nodulation Factor Rhizobium Leguminosarum Infection Thread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albersheim, P., and Anderson-Prouty, A. J., 1975, Carbohydrates, proteins, cell surfaces, and the biochemistry of pathogenesis, Ann. Rev. Plant Physiol. 26:31–52.CrossRefGoogle Scholar
  2. Aldington, S., McDougall, G. J., and Fry, S. C., 1991, Structure-activity relationships of biologically active oligosaccharides, Plant Cell Environ. 14:625–636.CrossRefGoogle Scholar
  3. Aman, P., McNeil, M., Franzen, L.-E., Darvill, A. G., and Albersheim, P., 1981, Structural elucidation, using HPLC-MS and GLC-MS, of the acidic exopolysaccharide secreted by Rhizobium meliloti strain Rm2011, Carbohydr. Res. 95:263–282.CrossRefGoogle Scholar
  4. Amemura, A., Hisamatsu, M., Mitani, H., and Harada, T., 1983, Cyclic (1-2)-β-d-glucan and the octasaccharide repeating units of extracellular acidic polysaccharides produced by Rhizobium, Carbohydr. Res. 114:277–285.CrossRefGoogle Scholar
  5. An, J., Carlson, R. W., Glushka, J., and Streeter, J. G., 1995, The structure of a novel polysaccharide produced by Bradyrhizobium species with soybean nodules, Carbohydr. Res. 269:303–317.PubMedCrossRefGoogle Scholar
  6. Ardourel, M., Demont, N., Debellé, F., Maillet, F., de Billy, F., Promé, J.-C., Dénarié, J., and Truchet, G., 1994, Rhizobium meliloti lipooligosaccharide nodulation factors: Different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses, Plant Cell 6:1357–1374.PubMedGoogle Scholar
  7. Astete, S. G., and Leigh, J. A., 1996, mucS, a gene involved in activation of galactoglucan (EPS II) synthesis gene expression in Rhizobium meliloti, Mol. Plant-Microbe Interact. 9:395–400.PubMedCrossRefGoogle Scholar
  8. Battisti, L., Lara, J. C., and Leigh, J. A., 1992, Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa, Proc. Natl. Acad. Sci. USA 89:5625–5629.PubMedCrossRefGoogle Scholar
  9. Bauer, W. D., 1981, Infection of legumes by rhizobia, Annu. Rev. Plant Physiol. 32:407–449.CrossRefGoogle Scholar
  10. Becker, A., Kleickmann, A., Arnold, W., and Pünier, A., 1993a, Analysis of the Rhizobium meliloti exoH/exoK/exoL fragment: ExoK shows homology to excreted endo-beta-1,3-1,4-glucanases and ExoH resembles membrane proteins, Mol. Gen. Genet. 238:145–154.PubMedGoogle Scholar
  11. Becker, A., Kleickmann, A., Arnold, W., Keller, M., and Pünier, A., 1993b, Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment, Mol. Gen. Genet. 241:367–379.PubMedGoogle Scholar
  12. Becker, A., Kleickmann, A., Küster, H., Keller, M., Arnold, W., and Pünier, A., 1993c, Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion, Mol. Plant-Microbe Interact. 6:735–744.PubMedCrossRefGoogle Scholar
  13. Becker, A., Niehaus, K., and Pünier, A., 1995a, Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain, Mol. Microbiol. 16:191–203.PubMedCrossRefGoogle Scholar
  14. Becker, A., Küster, H., and Pühler, A., 1995b, Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: identification of the exs A gene encoding an ABC transporter protein, and the exs B gene which probably codes for a regulator of succinoglycan biosynthesis, Mol. Gen. Genet. 249:487–497.PubMedCrossRefGoogle Scholar
  15. Becker, A., Küster, H., Roxlau, A., Keller, M., Ivashina, T., Cheng, H.-P., Walker, G. C., and Pünier, A., 1997, A 32 kb exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products, J. Bacteriol. 179:1375–1384.PubMedGoogle Scholar
  16. Becquart-de Kozak, I., Reuhs, B. L., Buffard, D., Breda, C., Kim, J. S., Esnault, R., and Kendorosi, A., 1997, Role of the K-antigen subgroup of capsular polysaccharides in the early recognition process between Rhizobium meliloti and alfalfa leaves, MPMI 10:114–123.CrossRefGoogle Scholar
  17. Bertram-Drogatz, P. A., Quester, I., Becker, A., and Pühler, A., 1998, The Sinorhizobium meliloti MucR protein is essential for the production of high molecular weight succinoglycan exopolysaccharide binds to short DNA regions upstream of exoH and exoY, Mol. Gen. Genet., in press.Google Scholar
  18. Bhat, U. R., and Carlson, R. W., 1992, Chemical characterization of pH-dependent structural epitopes of lipopolysaccharides from Rhizobium leguminosarum biovar phaseoli, J. Bacteriol. 174:2230–2235.PubMedGoogle Scholar
  19. Bhat, U. R., Krishnaiah, B. S., and Carlson, R. W., 1991a, Re-examination of the structures of the lipopolysaccharide core oligosaccharides from Rhizobium leguminosarum biovar phaseoli, Carbohydr. Res. 220:219–227.PubMedCrossRefGoogle Scholar
  20. Bhat, U. R., Mayer, H., Yokota, A., Hollingsworth, R. I., and Carlson, R. W., 1991b, Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae, J. Bacteriol. 173:2155–2159.PubMedGoogle Scholar
  21. Bhat, U. R., Forsberg, L. S., and Carlson, R. W., 1994, Structure of lipid A component of Rhizobium leguminosarum bv. phaseoli lipopolysaccharide: Unique nonphosphorylated lipid A containing 2-amino-2-deoxygluconate, galacturonate and glucosamine, J. Biol. Chem. 269:14402–14410.PubMedGoogle Scholar
  22. Bhuvaneswari, T. V., Turgeon, G. B., and Bauer, W. D., 1980, Early events in the infection of soybean by Rhizobium japonicum. I. Localization of infectable root cells, Plant Physiol. 66:1027–1031.PubMedCrossRefGoogle Scholar
  23. Bohlool, B. B., and Schmidt, E. L., 1974, A possible basis for specificity in the Rhizobium-legume root nodule symbiosis, Science 185:269–271.PubMedCrossRefGoogle Scholar
  24. Bond, L., 1948, Origin and developmental morphology of root nodules of Pisum sativum, Bot. Gaz. 109:411–434.CrossRefGoogle Scholar
  25. Borthakur, D., and Johnston, A. W. B., 1987, Sequence of psi, a gene of the symbiotic plasmid of Rhizobium phaseoli which inhibits exopolysaccharide synthesis and nodulation and demonstration that its transcription is inhibited by psr, another gene on the symbiotic plasmid, Mol. Gen. Genet. 207:149–154.PubMedCrossRefGoogle Scholar
  26. Borthakur, D., Barber, C. E., Lamb, J. W., Daniels, M. J., Downie, J. A., and Johnston, A. W. B., 1986, A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not by beans by Rhizobium phaseoli and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas, Mol. Gen. Genet. 203:320–323.CrossRefGoogle Scholar
  27. Branca, C., De Lorenzo, G., and Cervone, F., 1988, Competitive inhibition of the auxin-induced elongation by a-d-oligogalacturonides in pea stem segments, Physiol. Plant. 72:499–504.CrossRefGoogle Scholar
  28. Brewin, N. J., 1991, Development of the legume root nodule, Annu. Rev. Cell Biol. 7:191–226.PubMedCrossRefGoogle Scholar
  29. Brewin, N., and Kardalsky, I. V., 1997, Legume lectins and nodulation by Rhizobium, Trends in Plant Sci. 2:92–98.CrossRefGoogle Scholar
  30. Brewin, N. J., Wood, E. A., Larkins, A. P., Gafaré, G., and Butcher, G. W., 1986, Analysis of lipopolysaccharide from root nodule bacteroids of Rhizobium leguminosarum using monoclonal antibodies, J. Gen. Microbiol. 132:1959–1968.Google Scholar
  31. Brzoska, P. M., and Signer, E. R., 1991, lpsZ, a lipopolysaccharide gene involved in symbiosis of Rhizobium meliloti, J. Bacteriol. 173:3235–3237.PubMedGoogle Scholar
  32. Buendia, A. M., Enenkel, B., Koplin, R., Niehaus, K., Arnold, W., and Pühler, A., 1991, The Rhizobium meliloti exoZl exoB fragment of megaplasmid 2: ExoB functions as a UDP-glucose 4-epimerase and ExoZ shows homology to NodX of Rhizobium leguminosarum biovar viciae strain TOM, Mol. Microbiol. 5:1519–1530.PubMedCrossRefGoogle Scholar
  33. Caetano Anolles, G., and Gresshoff, P. M., 1991, Plant genetic control of nodulation, Annu. Rev. Microbiol. 45:345–382.PubMedCrossRefGoogle Scholar
  34. Callaham, D. A., and Torrey, J. G., 1981, The structural basis for infection of root hairs of Trifolium repens by Rhizobium, Can. J. Bot. 59:1647–1664.CrossRefGoogle Scholar
  35. Canter Cremers, H. C., Stevens, K., Lugtenberg, B. J., Wijffelman, C. A., Batley, M., Redmond, J. W., Breedveld, M. W., and Zevenhuizen, L. P., 1991, Unusual structure of the exopolysaccharide of Rhizobium leguminosarum bv. viciae strain 248, Carbohydr. Res. 218:185–200.PubMedCrossRefGoogle Scholar
  36. Carlson, R. W., 1984, Heterogenicity of Rhizobium lipopolysaccharides, J. Bacteriol. 158:548–555.Google Scholar
  37. Carlson, R. W., and Garci, F., 1989, The structures of the lipopolysaccharide core components from Rhizobium leguminosarum biovar phaseoli CE3 and two of its symbiotic mutants, CE109 and CE309, Carbohydr. Res. 195:101–110.PubMedCrossRefGoogle Scholar
  38. Carlson, R. W., and Krishnaiah, B. S., 1992, Structures of the oligosaccharides obtained from the core regions of the lipopolysaccharides of Bradyrhizobium japonicum 61A101c and its symbiotically defective lipopolysaccharide mutant, JS314, Carbohydr. Res. 231:205–219.PubMedCrossRefGoogle Scholar
  39. Carlson, R. W., and Yadav, M., 1985, Isolation and partial characterization of the extracellular polysaccharides and lipopolysaccharides from fast-growing Rhizobium japonicum USDA205 and its nod-mutant, HC205, which lacks the symbiotic plasmid, Appl. Environ. Microbiol. 50:1219–1224.PubMedGoogle Scholar
  40. Carlson, R. W., Hanley, B., Rolfe, B. G., and Djordjevic, M. A., 1986, A structural comparison of the acidic extracellular polysaccharides from Rhizobium trifolii mutants affected in root hair infection, Plant Physiol. 80:134–137.PubMedCrossRefGoogle Scholar
  41. Carlson, R. W., Kalembasa, S., Turowski, D., Pachori, P., and Noel, K. D., 1987a, Characterization of the lipopolysaccharide from a Rhizobium phaseoli mutant that is defective in infection thread development, J. Bacteriol. 169:4923–4928.PubMedGoogle Scholar
  42. Carlson, R. W., Shatters, R., Duh, J.-L., Turnbull, E., Hanley, B., Rolfe, B. G., and Djordjevic, M. A., 1987b, The isolation and partial characterization of the lipopolysaccharides from several Rhizobium trifolii mutants affected in root hair infection, Plant Physiol. 84:421–427.PubMedCrossRefGoogle Scholar
  43. Carlson, R. W., Reuhs, B., Chen, T. B., Bhat, U. R., and Noel, K. D., 1995, Lipopolysaccharide core structures in Rhizobium etli and mutants deficient in O-antigen, J. Biol. Chem. 270:11783–11788.PubMedCrossRefGoogle Scholar
  44. Carrion, M., Bhat, R., Rehus, B., and Carlson, R. W., 1990, Isolation and characterization of the lipopolysaccharides from Bradyrhizobium japonicum, J. Bacteriol. 172:1725–1731.PubMedGoogle Scholar
  45. Cava, J. R., Elias, P. M., Turowski, D. A., and Noel, K. D., 1989, Rhizobium leguminosarum CNF42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants, J. Bacteriol. 171:8–15.PubMedGoogle Scholar
  46. Chakravorty, A. K., Zurkowski, W., Shine, J., and Rolfe, B. G., 1982, Symbiotic nitrogen fixation: Molecular cloning of Rhizobium genes involved in exopolysaccharide synthesis and effective nodulation, J. Mol. Appl. Gen. 1:585–596.Google Scholar
  47. Chandler, M. R., 1978, Some observations on the infection of Arachis hypogaea L. by Rhizobium, J. Exp. Bot. 29:749–755.CrossRefGoogle Scholar
  48. Chandler, M. R., Date, R. A., and Roughley, R. J., 1982, Infection and root nodule development in Stylosanthes species by Rhizobium, J. Exp. Bot. 33:47–57.CrossRefGoogle Scholar
  49. Charles, T. C., and Finan, T. M., 1991, Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo, Genetics 127:5–20.PubMedGoogle Scholar
  50. Chen, H., Batley, M., Redmond, J., and Rolfe, B. G., 1985, Alteration of the effective nodulation properties of a fast growing broad host range Rhizobium due to changes in exopolysaccharide synthesis, J. Plant Physiol. 120:331–349.CrossRefGoogle Scholar
  51. Clover, R. H., Kieber, J., and Signer, E. R., 1989, Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis, J. Bacteriol. 171:3961–3967.PubMedGoogle Scholar
  52. Coplin, D. L., and Cook, D., 1990, Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria, Mol. Plant-Microbe Interact. 3:271–279.PubMedCrossRefGoogle Scholar
  53. Cote, F., and Hahn, M. G., 1994, Oligosaccharins: Structures and signal transduction, Plant Mol. Biol. 26:1379–1411.PubMedCrossRefGoogle Scholar
  54. Currier, W. W., and Strobel, G. A., 1976, Chemotaxis of Rhizobium spp. to plant root exudates, Plant Physiol. 57:820–823.PubMedCrossRefGoogle Scholar
  55. Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J. J., Eberhard, S., Hahn, M. G., Ló, V. M., Marfà, V., Meyer, B., Mohnen, D., O’Neil, M. A., Spiro, M. D., Halbeek, H., York, W. S., and Albersheim, P., 1992, Oligosaccharins—Oligosaccharides that regulate growth, development and defence responses in plants, Glycobiology 2:181–198.PubMedCrossRefGoogle Scholar
  56. Dazzo, F. B., 1980, Lectins and their saccharide receptors as determinants of specificity in the Rhizobium-legume symbiosis, in The Cell Surface: Mediator of Developmental Processes (S. Subtelny and N. K. Wessells, eds.), pp. 81–104, Academic Press, New York.Google Scholar
  57. Dazzo, F. B., and Brill, W. J., 1977, Receptor site on clover and alfalfa roots for Rhizobium, Appl. Environ. Microbiol. 33:132–136.PubMedGoogle Scholar
  58. Dazzo, F. B., Truchet, G. L., Sherwood, J. E., Hrabak, E. M., Abe, M., and Pankratz, S. H., 1984, Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis, Appl. Environ. Microbiol. 48:87–94.Google Scholar
  59. Dazzo, F. B., Truchet, G. L., Hollingsworth, R. I., Hrabak, E. M., Pankratz, H. S., Philip-Hollingsworth, S., Salzwedel, J. L., Chapman, K., Appenzeller, L., Squartini, A., etal., 1991, Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs, J. Bacteriol. 173:5371–5384.PubMedGoogle Scholar
  60. Dazzo, F. B., Orgambide, G. G., Philip-Hollingsworth, J., Hollingsworth, R. I., Nike, K. O., and Salzwedel, J. L., 1996, Modulation of development, growth dynamics, wall crystallinity, and infection sites in white clover root hairs by membrane chitolipooligosaccharides from Rhizobium leguminosarum bv. trifolii, J. Bacteriol. 178:3621–3627.PubMedGoogle Scholar
  61. DeMaagd, R. A., Rao, A. S., Mulders, I. H. M., Goosen-de Roo, L., VanLoosdrecht, M. C. M., Wijffelman, C. A., and Lugtenberg, B. J. J., 1989, Isolation and characterization of mutants of Rhizobium leguminosarum bv. viciae 248 with altered lipopolysaccharides: Possible role of surface charge or hydrophobicity in bacterial release from the infection thread, J. Bacteriol. 171:1143–1150.Google Scholar
  62. Denarie, J., Debelle, F., and Rosenberg, C., 1992, Signaling and host range variation in nodulation, Annu. Rev. Microbiol. 46:497–531.PubMedCrossRefGoogle Scholar
  63. Denarie, J., Truchet, G., and Prome, J. C., 1994, Lipo-oligosacchaaride signalling: The mediation of recognition and nodule organogenesis induction in the legume-Rhizobium symbiosis, Biochem. Soc. symp. 60:51–60.PubMedGoogle Scholar
  64. Diebold, R., and Noel, K. D., 1989, Rhizobium leguminosarum exopolysaccharide mutants: Biochemical and genetic analyses and symbiotic behaviour on three hosts, J. Bacteriol. 171:4821–4830.PubMedGoogle Scholar
  65. Djordjevic, S. P., Rolfe, B. G., Batley, M., and Redmond, J. W., 1986, The structure of the exopolysaccharide from Rhizobium sp. strain NGR234, Carbohydr. Res. 148:87–99.CrossRefGoogle Scholar
  66. Djordjevic, S. P., Chen, H., Batley, M., Redmond, J. W., and Rolfe, B. G., 1987, Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides, J. Bacteriol. 169:114–126.Google Scholar
  67. Doherty, D., Leigh, J. A., Glazebrook, J., and Walker, G. C., 1988, Rhizobium meliloti mutants that overproduce the R. meliloti acidic Calcofluor-binding exopolysaccharide, J. Bacteriol. 170:4249–4256.PubMedGoogle Scholar
  68. Dudley, M. E., Jacobs, T. W., and Long, S. R., 1987, Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti, Planta 171:289–301.CrossRefGoogle Scholar
  69. Dudman, W. F., 1978, Structural studies of the extracellular polysaccharides of Rhizobium japonicum strains 71a, CC708 and CB1795, Carbohydr. Res. 66:9–23.CrossRefGoogle Scholar
  70. Dylan, T., Nagpal, P., Helsinski, D. R., and Ditta, G., 1990, Symbiotic pseudorevertants of R. meliloti ndv mutants, J. Bacteriol. 172:1409–1417.PubMedGoogle Scholar
  71. Fahraeus, G., 1957, The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique, J. Gen. Microbiol. 16:374–381.PubMedCrossRefGoogle Scholar
  72. Finan, T. M., Hirsch, A. M., Leigh, J. A., Johansen, E., Kuldau, G. A., Deegan, S., Walker, G. C., and Signer, E. R., 1985, Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation, Cell 40:869–877.PubMedCrossRefGoogle Scholar
  73. Finan, T. M., Kunkel, B., De Vos, G. F., and Signer, E. R., 1986, Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes, J. Bacteriol. 167:66–72.PubMedGoogle Scholar
  74. Fischer, H. M., 1994, Genetic regulation of nitrogen fixation in rhizobia, Microbiol. Rev. 58:352–386.PubMedGoogle Scholar
  75. Forsbery, L. S., and Reuhs, B. L., 1997, Structural characterization of the K antigens from Rhizobium fredii USDA257: Evidence for a common structural motiv, with strain specific variation, within capsular polysaccharides of Rhizobium spp., J. Bacteriol. 179:5366–5371.Google Scholar
  76. Gil-Serrano, A., del Junco, A. S., Tejero-Mateo, P., Megias, M., and Caviedes, M. A., 1990, Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899, Carbohydr. Res. 204:103–107.PubMedCrossRefGoogle Scholar
  77. Glazebrook, J., and Walker, G. C., 1989, A novel exopolysaccharide can function in place of the Calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti, Cell 56:661–672.PubMedCrossRefGoogle Scholar
  78. Glucksmann, M. A., Reuber, L., and Walker, G. C., 1993a, Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: A model for succinoglycan biosynthesis, J. Bacteriol. 175:7045–7055.PubMedGoogle Scholar
  79. Glucksmann, M. A., Reuber, T. L., and Walker, G. C., 1993b, Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti, J. Bacteriol. 175:7033–7044.PubMedGoogle Scholar
  80. Gonzales, J. E., Rehus, B. L., and Walker, G. C., 1996a, Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa, Proc. Natl. Acad. Sci. USA 93:8636–8641.CrossRefGoogle Scholar
  81. Gonzáles, J. E., York, G. M., and Walker, G. C., 1996b, Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function, Gene 179:141–146.CrossRefGoogle Scholar
  82. Gross, M., Geier, G., Geider, K., and Rodolph, K., 1992, Levan and levan sucrase synthesized by the fireblight pathogen Erwinia amylovora, Physiol. Mol. Plant Pathol. 40:371–381.CrossRefGoogle Scholar
  83. Grosskopf, E., Ha, D. T. C., Wingender, R., Roehrig, H., Szesci, J., Kondorosi, E., Schell, J., and Kondorosi, A., 1993, Enhanced levels of chalcone synthase in alfalfa nodules induced by a Fix negative mutant of Rhizobium meliloti, Mol. Plant-Microbe Interact. 6:173–181.CrossRefGoogle Scholar
  84. Gulash, M., Ames, P., LaRosiliere, R. C., and Bergman, K., 1984, Rhizobia are attracted to localized sites in legume roots, Appl. Environ. Microbiol. 48:148–152.Google Scholar
  85. Her, G. R., Glazebrook, J., Walker, G. C., and Reinhold, V. N., 1990, Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm2011, Carbohydr. Res. 198:305–312.PubMedCrossRefGoogle Scholar
  86. Hirsch, A. M., and Fang, Y., 1994, Plant hormones and nodulation: What’s the connection? Plant Mol. Biol. 26:5–9.PubMedCrossRefGoogle Scholar
  87. Hirsch, P. R., and Spokes, J. D., 1994, Survival and dispersion of genetically modified rhizobia in the field and genetic interactions with native strains, FEMS Microbiol. Ecol. 15:147–159.CrossRefGoogle Scholar
  88. Hitchcock, P. J., and Brown, T. M., 1983, Morphological hetrogenicity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels, J. Bacteriol. 154:269–277.PubMedGoogle Scholar
  89. Ho, J. C., Wang, J. L., Schindler, M., and Loh, S. T., 1994, Carbohydrate binding activities of Bradyrhizobium japonicwn: III Lectin expression, bacterial binding, and nodulation efficiency, Plant J. 5:873–884.PubMedCrossRefGoogle Scholar
  90. Hollingsworth, R. I., and Dazzo, F. B., 1988, The complete structure of the trifoliin A lectin-binding capsular polysaccharaide of Rhizobium trifolii 843, Carbohydr. Res. 172:92–112.CrossRefGoogle Scholar
  91. Hollingsworth, R. I., Carlson, R. W., Garcia, F., and Gage, D. A., 1989, A new core tetrasaccharide component from the lipopolysaccharide ai Rhizobium trifolii ANU843, J. Biol. Chem. 264:9294–9299.PubMedGoogle Scholar
  92. Hollingsworth, R. I., Zhang, Y., and Priefer, U. B., 1994, Structure of the unusual trisaccharide lipopolysaccharide component produced by a symbiotically defective mutant of Rhizobium leguminosarum biovar viciae, Carbohydr. Res. 264:271–280.PubMedCrossRefGoogle Scholar
  93. Hotter, G. S., and Scott, D. B., 1991, Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host, J. Bacteriol. 173:851–859.PubMedGoogle Scholar
  94. Hynes, M. F., Simon, R., Müller, P., Niehaus, K., Labes, M., and Pühler, A., 1986, The two megaplasmids of Rhizobium meliloti are involved in effective nodulation of alfalfa, Mol. Gen. Genet. 1986:356–362.CrossRefGoogle Scholar
  95. Ielpi, L., Couso, R., and Dankert, M., 1981a, Lipid linked intermediates in the biosynthesis of xanthan gum, FEBS Lett. 130:253–256.PubMedCrossRefGoogle Scholar
  96. Ielpi, L., Couso, R. O., and Dankert, M. A., 1981b, Xanthan gum biosynthesis: Pyruvic avid acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid, Biochem. Biophys. Res. Commun. 102:1400–1408.PubMedCrossRefGoogle Scholar
  97. Ielpi, L., Dylan, T., Ditta, G., Helinski, D. R., and Stanfield, S. W., 1990, The ndvB locus of Rhizobium meliloti encodes a 319 KDa protein involved in the production of β-1,2-glucan, J. Biol. Chem. 265:2843–2851.PubMedGoogle Scholar
  98. James, E. K., Sprent, J. L., Sutherland, J. M., Mcinroy, S. G., and Minchin, F. R., 1992, The structure of nitrogen fixing root nodules on the aquatic mimosoid legume Neptunia plena, Annu. Bot. 69:173–180.Google Scholar
  99. Jansson, P.-E., Kenne, L., Lindberg, B., Ljunggren, H., Lönngren, J., Rudén, U., and Svensson, S., 1977, Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation, J. Am. Chem. Soc. 99:3812–3815.PubMedCrossRefGoogle Scholar
  100. Joshi, P. A., Caetano-Anollés, G., Graham, E. T., and Gresshoff, P. M. (1991, Ontogeny and ultrastructure of spontaneous nodules in alfalfa (Medicago sativa), Protoplasma 162:1–11.CrossRefGoogle Scholar
  101. Kannenberg, E. L., and Brewin, N. J., 1989, Expression of a cell surface antigen from Rhizobium leguminosarum 3841 is regulated by oxygen and pH, J. Bacteriol. 171:4543–4548.PubMedGoogle Scholar
  102. Kannenberg, E. L., and Brewin, N. J., 1994, Host-plant invasion by Rhizobium: The role of cell-surface components, Trends Microbiol. 2:277–283.PubMedCrossRefGoogle Scholar
  103. Kannenberg, E. L., Rathbun, E. A., and Brewin, N. J., 1992, Molecular dissection of structure and function in the lipopolysaccharide of Rhizobium leguminosarum strain 3841 using monoclonal antibodies and genetic analysis, Mol. Microbiol. 6:2477–2487.PubMedCrossRefGoogle Scholar
  104. Kannenberg, E. L., Perotto, S., Bianciotto, V., Rathbun, E. A., and Brewin, N. J., 1994, Lipopolysaccharide epitope expression of Rhizobium bacteroids as revealed by in situ immunolabelling of pea root nodule sections, J. Bacteriol. 176:2021–2032.PubMedGoogle Scholar
  105. Kapp, D., Niehaus, K., Quandt, J., Müller, P., and Pühler, A., 1990, Cooperative action of Rhizobium meliloti nodulation and infection mutants during the process of forming mixed infected alfalfa nodules, Plant Cell 2:139–151.PubMedGoogle Scholar
  106. Keller, M., Roxlau, A., Weng, W. M., Schmidt, M., Quandt, J., Niehaus, K., Jording, D., Arnold, W., and Pühler, A., 1995, Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan, Mol. Plant-Microb Interact. 8:267–277.CrossRefGoogle Scholar
  107. Kim, J. S., Reuhs, B. L., Rahman, M. M., Ridley, B., and Carlson, R. W., 1996. Separation of bacterial capsular and lipopolysaccharides by preparative electrophoresis, Glycobiology 6:433–437.PubMedCrossRefGoogle Scholar
  108. Kiss, E., Reuhs, B. L., Kim, J. S., Kereszt, A., Petrovics, G., Putnoky, P., Dusha, I., Carlson, R. W., and Kandorosin, A., 1997, The rkp GHI and-J genes are involved in capsular polysaccharide production by Rhizobium meliloti, J. Bacteriol. 179:2132–2140.PubMedGoogle Scholar
  109. Klein, S., Hirsch, A. M., Smith, C. A., and Signer, E. R., 1988, Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation, Mol. Plant-Microbe Interact. 1:94–100.PubMedCrossRefGoogle Scholar
  110. Kosch, K., Jacobi, A., Parniske, M., Werner, D., and Mueller, P., 1994, The impairment of the nodulation process induced by a Bradyrhizobium japonicum exopolysaccharide mutant is determined by the genotype of the host plant, Z. Naturforsch. C Biosci. 49:727–736.Google Scholar
  111. Lagares, A., Caetano Anolles, G., Niehaus, K., Lorenzen, J., Ljunggren, H. D., Pühler, A., and Favelukes, G., 1992, A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa, J. Bacteriol. 174:5941–5952.PubMedGoogle Scholar
  112. Latchford, J. W., Borthakur, D., and Johnston, A. W., 1991, The products of Rhizobium genes, psi and pss, which affect exopolysaccharide production, are associated with the bacterial cell surface, Mol. Microbiol. 5:2107–2114.PubMedCrossRefGoogle Scholar
  113. Legocki, R. P., and Verma, D. P., 1980, Identification of “nodule specific” host proteins (nodulins) involved in the development of rhizobium-legume symbiosis, Cell 20:153–163.PubMedCrossRefGoogle Scholar
  114. Leigh, J. A., and Coplin, D. L., 1992, Exopolysaccharides in plant-bacterial interactions, Annu. Rev. Microbiol. 46:307–346.PubMedCrossRefGoogle Scholar
  115. Leigh, J. A., and Lee, C. C., 1988, Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules, J. Bacteriol. 170:3327–3332.PubMedGoogle Scholar
  116. Leigh, J. A., Signer, E. R., and Walker, G. C., 1985, Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules, Proc. Natl. Acad. Sci. USA 85:6231–6235.CrossRefGoogle Scholar
  117. Leigh, J. A., Reed, J. W., Hanks, J. F., Hirsch, A. M., and Walker, G. C., 1987, Rhizobium meliloti mutants that fail to succinylate their Calcofluor-binding exopolysaccharide are defective in nodule invasion, Cell 51:579–587.PubMedCrossRefGoogle Scholar
  118. Levery, S. B., Zhan, H., Lee, C. C., Leigh, J. A., and Hakomori, S., 1991, Structural analysis of a second acidic exopolysaccharide of Rhizobium meliloti that can function in alfalfa root nodule invasion, Carbohydr. Res. 210:339–347.PubMedCrossRefGoogle Scholar
  119. Libbenga, K. R., and Harkes, P. A. A., 1973, Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L., Planta 114:17–28.CrossRefGoogle Scholar
  120. Long, S., Reed, J. W., Himawan, J., and Walker, G. C., 1988, Genetic analysis of a cluster of genes required for synthesis of the Calcofluor-binding exopolysaccharide of Rhizobium meliloti, J. Bacteriol. 170:4239–4248.PubMedGoogle Scholar
  121. Lopez Lara, I. M., Orgambide, G., Dazzo, F. B., Olivares, J., and Toro, N., 1993, Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules, J. Bacteriol. 175:2826–2832.PubMedGoogle Scholar
  122. Lopez-Lara, I. M., Orgambide, G., Dazzo, F. B., Olivares, J., and Toro, N., 1995, Surface polysaccharide mutants of Rhizobium sp. (Acacia) strain GRH2: Major requirement of lipopolysaccharide for successful invasion of Acacia nodules and host range determination, Microbiology 141:573–581.PubMedCrossRefGoogle Scholar
  123. Lorkiewicz, Z., Derylo, M., Russa, R., Skorupska, A., and Urbanik Sypniewska, T., 1993, Rhizobium leguminosarum biovar trifolii mutants altered in surface structures that are defective in nodulation or nitrogen fixation, Acta Microbiol. Polon. 42:219–234.Google Scholar
  124. Marfá, V., Gollin, D. J., Eberhard, S., Mohnen, D., Darvill, A., and Albersheim, P., 1991, Oligogalacturonides in suspension-cultured tobacco cells, Plant J. Cell Mol. Biol. 1:217–225.CrossRefGoogle Scholar
  125. Mateos, P. F., Baker, D. L., PhilipHollingsworth, S., Squartini, A., Peruffo, A. D. B., Nuti, M. P., and Dazzo, F. B., 1995, Direct in situ identification of cellulose microfibrils associated with Rhizobium leguminosarum biovar trifolii attached to the root epidermis of white clover, Can. J. Microbiol. 41:202–207.CrossRefGoogle Scholar
  126. Matthysse, A. G., 1983, Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infections, J. Bacteriol. 154:906–915.PubMedGoogle Scholar
  127. Matulová, M., Toffanin, R., Navarini, L., Gilli, R., Paoletti, S., and Cesàro, A., 1994, NMR analysis of succinoglycans from different microbial sources: Partial assignment of their 1H and 13C NMR spectra and localization of the succinate and acetate groups, Carbohydr. Res. 265:167–179.PubMedCrossRefGoogle Scholar
  128. Mellor, R. B., and Collinge, D. B., 1995, A simple model based on known plant defence reactions is sufficient to explain most aspects of nodulation, J. Exp. Bot. 46:1–18.CrossRefGoogle Scholar
  129. Mort, A. J., and Bauer, W. D., 1982, Application of two new methods for cleavage of polysaccharides into specific oligosaccharide fragments, J. Biol. Chem. 257:1870–1875.PubMedGoogle Scholar
  130. Müller, P., Hynes, M. F., Kapp, D., Niehaus, K., and Pühler, A., 1988, Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants, Mol. Gen. Genet. 211:17–26.CrossRefGoogle Scholar
  131. Müller, P., Keller, M., Weng, W. M., Quandt, J., Arnold, W., and Pühler, A., 1993, Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein, Mol. Plant-Microbe Interact. 6:55–65.PubMedCrossRefGoogle Scholar
  132. Mulligan, J. T., and Long, S. R., 1985, Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD, Proc. Natl. Acad. Sci. USA 82:6609–6613.PubMedCrossRefGoogle Scholar
  133. Mulligan, J. T., and Long, S. R., 1989, A family of activator genes regulates expression of Rhizobium meliloti nodulation genes, Genetics 122:7–18.PubMedGoogle Scholar
  134. Mutaftschiev, S., Vasse, J., and Truchet, G., 1982, Exostructures of Rhizobium meliloti, FEMS Microbiol. Lett. 13:171–175.CrossRefGoogle Scholar
  135. Napoli, C. A., and Hubbell, D. H., 1975, Ultrastructure of Rhizobium-induced infection threads in clover root hairs, Appl. Microbiol. 30:1003–1009.PubMedGoogle Scholar
  136. Newcomb, W., 1981, Nodule morphogenesis and differentiation, in Biology of the Rhizobiaceae (K. L. Giles and A. G. Atherly, eds.), pp. 245–298, Academic Press, New York.Google Scholar
  137. Niehaus, K., Kapp, D., and Puehler, A., 1993, Plant defence and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant, Planta 190:415–425.CrossRefGoogle Scholar
  138. Niehaus, K., Baier, R., Lorenzen, J., Meyer-Gattermann, P., Sieben, S., and Pühler, A., 1994, Plant defence in alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient symbiont Rhizobium meliloti, Acta Horticult. 381:258–264.Google Scholar
  139. Niehaus, K., Baier, R., Kohring, B., Flaschel, E., and Pühler, A., 1997a, Symbiotic suppression of the Medicago sativa plant defence system by Rhizobium meliloti oligosaccharides, in Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture (A. Legocki, H. Bothe, and A. Pühler, eds.), pp. 111–114, Springer, Heidelberg.CrossRefGoogle Scholar
  140. Niehaus, K., Lorenzen, J., Lagares, A., and Pühler, A., 1997b, A Rhizobium meliloti lipopolysaccharide mutant effective in Medicago sativa but ineffective in Medicago truncatula, submitted.Google Scholar
  141. Noel, K. D., VandenBosch, K. A., and Kulpaca, B., 1986, Mutations in Rhizobium phaseoli that lead to arrested development in infection threads, J. Bacteriol. 168:1392–1401.PubMedGoogle Scholar
  142. Noel, K. D., Duelli, D. M., Tao, H., and Brewin, N. J., 1996, Antigenic change in the lipopolysaccharide of Rhizobium etli CFN42 induced by exudates of Phaseolus vulgaris, Mol. Plant-Microbe Interact. 9:180–186.CrossRefGoogle Scholar
  143. Østeras, M., Stanley, J., and Finan, T. M., 1995, Identification of Rhizobium-specific intergenic mosaic elements within essential two-component regulatory system of Rhizobium species, J. Bacteriol. 177:5485–5494.PubMedGoogle Scholar
  144. Ozga, D. A., Lara, J. C., and Leigh, J. A., 1994, The regulation of exopolysaccharide production is important at two levels of nodule development in Rhizobium meliloti, Mol. Plant-Microbe Interact. 7:758–765.PubMedCrossRefGoogle Scholar
  145. Parke, D., Rivelli, M., and Ornston, L. N., 1985, Chemotaxis to aromatic and hydroaromatic acids: Comparison of Bradyrhizobium japonicum and Rhizobium trifolii, J. Bacteriol. 163:417–422.PubMedGoogle Scholar
  146. Parniske, M., Schmidt, P. E., Kosch, K., and Mueller, P., 1994, Plant defense response of host plants with determinate nodules induced by EPS-defective exoB mutants of Bradyrhizobium japonicum, Mol. Plant-Microbe Interact. 7:631–638.CrossRefGoogle Scholar
  147. Perotto, S., Brewin, N. J., and Kannenberg, E. L., 1994, Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841, Mol. Plant-Microbe Interact. 7:99–112.CrossRefGoogle Scholar
  148. Petrovics, G., Putnoky, P., Reuhs, B. L., Kim, J., Thorp, T. A., Noel, K. D., Carlson, R. W., and Kondorosi, A., 1993, The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development, Mol. Microbiol. 8:1083–1094.PubMedCrossRefGoogle Scholar
  149. Praveen, N., Webb, D. T., and Borthakur, D., 1996, Leucaena leucocephala nodules formed by a surface polysaccharide defective mutant of Rhizobium sp. strain TALI 145 are delayed in bacteroid development and nitrogen fixation, Mol. Plant-Microbe Interact. 9:364–372.CrossRefGoogle Scholar
  150. Price, N. P., Jeyaretnam, B., Carlson, R. W., Kadrmas, J. L., Raetz, C. R., and Brozek, K. A., 1995, Lipid A biosynthesis in Rhizobium leguminosarum: Role of a 2-keto-3-deoxyoctulosonate-activated 4′ phosphatase, Proc. Natl. Acad. Sci. USA 92:7352–7356.PubMedCrossRefGoogle Scholar
  151. Priefer, U. B., 1989, Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39, J. Bacteriol. 171:6161–6168.PubMedGoogle Scholar
  152. Pull, S. P., Pueppke, S. G., Hymowitz, T., and Ord, J. H., 1978, Soybean lines lacking the 120,000-Dalton seed lectin, Science 200:1277–1279.PubMedCrossRefGoogle Scholar
  153. Putnoky, P. E., Grosskopf, E., Ha, D. T. C., Kiss, G. B., and Kondorosi, A., 1988, Rhizobium fix genes mediate at least two communication steps in symbiotic nodule development, J. Cell Biol. 106:597–607.PubMedCrossRefGoogle Scholar
  154. Puvanesarajah, V., Schell, F. M., Gerhold, D., and Stacey, G., 1987, Cell surface polysaccharides from Bradyrhizobium japonicum and a nonnodulating mutant, J. Bacteriol. 169:137–141.PubMedGoogle Scholar
  155. Quandt, J., Hillemann, A., Niehaus, K., Arnold, W., and Pühler, A., 1992, An osmorevertant of a Rhizobium meliloti ndvB deletion mutant forms infection threads but is defective in bacteroid development, Mol. Plant-Microbe Interact. 5:420–427.CrossRefGoogle Scholar
  156. Reed, J. W., and Walker, G. C., 1991a, Acidic conditions permit effective nodulation of alfalfa by invasion-deficient Rhizobium meliloti exoD mutants, Genes Dev. 5:2274–2287.PubMedCrossRefGoogle Scholar
  157. Reed, J. W., and Walker, G. C., 1991b, The exoD gene of Rhizobium meliloti encodes a novel function needed for alfalfa nodule invasion, J. Bacteriol. 173:664–677.PubMedGoogle Scholar
  158. Reed, J. W., Capage, M., and Walker, G. C., 1991a, Rhizobium meliloti exoG and exoJ mutations affect the exoX-exoY system for modulation of exopolysaccharide production, J. Bacteriol. 173:3776–3788.PubMedGoogle Scholar
  159. Reed, J. W., Glazebrook, J., and Walker, G. C., 1991b, The exoR gene of Rhizobium meliloti affects RNA levels of other exo genes but lacks homology to known transcriptional regulators, J. Bacteriol. 173:3789–3794.PubMedGoogle Scholar
  160. Reinhold, B. B., Chan, S. Y., Reuber, T. L., Marra, A., Walker, G. C., and Reinhold, V. N., 1994, Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021, J. Bacteriol. 176:1997–2002.PubMedGoogle Scholar
  161. Reuber, T. L., and Walker, G. C., 1993a, The acetyl substituent of succinoglycan is not necessary for alfalfa nodule invasion by Rhizobium meliloti Rm1021, J. Bacteriol. 175:3653–3655.PubMedGoogle Scholar
  162. Reuber, T. L., and Walker, G. C., 1993b, Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti, Cell 74:269–280.PubMedCrossRefGoogle Scholar
  163. Reuber, T. L., Long, S., and Walker, G. C., 1991, Regulation of Rhizobium meliloti exo genes in free-living cells and in plants examined by using TnphoA fusions, J. Bacteriol. 173:426–434.PubMedGoogle Scholar
  164. Reuhs, B. L., Carlson, R. W., and Kim, J. S., 1993, Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-d-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli, J. Bacteriol. 175:3570–3580.PubMedGoogle Scholar
  165. Reuhs, B. L., Kim, J. S., Badgett, A., and Carlson, R. W., 1994, Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract, MPMI 7:240–247.PubMedCrossRefGoogle Scholar
  166. Reuhs, B. L., Williams, M. N., Kim, J. S., Carlson, R. W., and Cote, F., 1995, Suppression of the Fix-phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide, J. Bacteriol. 177:4289–4296.PubMedGoogle Scholar
  167. Rietschel, E. T., Brade, H., Holst, O., Brade, L., Müller-Loennies, S., Mamat, U., Zähringer, U., Beckmann, F., Seydel, U., Brandenburg, K., Ulmer, A. J., Mattern, T., Heine, H., Schletter, J., Loppnow, H., Schönbeck, U., Flad, H.-D., Hauschildt, S., Schade, U. F., Padova, D., Kusumoto, S., and Schumann, R. R., 1996, Bacterial endotoxins: Chemical constitution, biological recognition, host response, and immunological detoxification, in Pathology of Septic Shock (E. T. Rietschel and H. Wagner, eds.), pp. 40–69, Springer, Berlin.CrossRefGoogle Scholar
  168. Robertsen, B. K., Aman, P., Darvill, A. G., McNeil, M., and Albersheim, P., 1981, Host-symbiont interactions V., The structe of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii, Plant Physiol. 67:389–400.PubMedCrossRefGoogle Scholar
  169. Rolfe, B. G., Gresshoff, P. M., Shine, J., and Vincent, J. M., 1980, Interaction between a non-nodulating and an ineffective mutant of Rhizobium trifolii resulting in effective (nitrogen fixing) nodulation, Appl. Environ. Microbiol. 39:449–452.PubMedGoogle Scholar
  170. Rolfe, B. G., Carlson, R. W., Ridge, R. W., Dazzo, F. B., Mateos, P. F., and Pankhurst, C. E., 1996, Defective infection and nodulation of covers by exopolysaccharide mutants of Rhizobium leguminosarum bv. trifolii, Austral. J. Physiol. 23:285–303.CrossRefGoogle Scholar
  171. Ross, P., Mayer, R., and Benziman, M., 1991, Cellulose biosynthesis and function in bacteria, Microbiol. Rev. 55:35–58.PubMedGoogle Scholar
  172. Roth, L. E., Jeon, K. W., and Stacey, G., 1988, Homology in endosymbiotic systems: The term “symbiosome,” in Molecular Genetics of Plant-Microbe Interactions (R. Palacios and D. P. S. Verma, eds.), Minnesota, pp. 28–28, APS Press, St. Paul.Google Scholar
  173. Russa, R., Urbanik Sypniewska, T., Shashkov, A. S., Kochanowski, H., and Mayer, H., 1995, The structure of the homopolymeric O-specific chain from the phenol soluble LPS of the Rhizobium luti type strain NSP2213, Carbohydr. Polym. 27:299–303.CrossRefGoogle Scholar
  174. Russa, R., Bruneteau, M., Shashkov, A. S., Urbanik Sypniewska, T., and Mayer, H., 1996, Characterization of the lipopolysaccharides from Rhizobium meliloti strain 102F51 and its nonnodulating mutant WL113, Arch. Microbiol. 165:26–33.PubMedCrossRefGoogle Scholar
  175. Salzer, P., Hebe, G., Reith, A., Zitterell-Haid, B., Stransky, H., Gaschler, K., and Hager, A., 1996, Rapid reactions of spruce cells to elicitors released from the ectomycorrhizal fungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular spruce cell enzymes, Planta 198:118–126.CrossRefGoogle Scholar
  176. Saxena, I. M., Kudlicka, K., Okuda, K., and Brown, R. M., 1994, Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: Implications for cellulose crystallization, J. Bacteriol. 176:5735–5752.PubMedGoogle Scholar
  177. Schaede, R., 1940, Die Knöllchen der adventiven Wasserwurzeln von Neptunia oleraceae und ihre Bakteriensymbiose, Planta 31:1–21.CrossRefGoogle Scholar
  178. Schultze, M., and Kondorosi, A., 1995, What makes nodulation signals host-plant specific? Trends Microbiol. 3:370–372.PubMedCrossRefGoogle Scholar
  179. Shiraishi, T., Yamada, T., Saitoh, K., Kato, T., Toyoda, K., Yoshioka, H., Kim, H. M., Ichinose, Y., Tahara, M., and Oku, H., 1994, Suppressors: Determinants of specificity produced by plant pathogens, Plant Cell Physiol. 35:1107–1119.Google Scholar
  180. Sindhu, S. S., Brewin, N. J., and Kannenberg, E. L., 1990, Immunochemical analysis of lipopolysaccharides from free-living and endosymbiotic forms of Rhizobium leguminosarum, J. Bacteriol. 172:1804–1813.PubMedGoogle Scholar
  181. Smith, G., Kijne, J., and Lugtenberg, B. J. J., 1987, Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips, J. Bacteriol. 169:4294–4301.Google Scholar
  182. Smith, G., Logman, T. J. J., Boerrigter, M. E. T. I., Kijne, J., and Lugtenberg, B. J. J., 1989, Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips, J. Bacteriol. 171:4054–4062.Google Scholar
  183. Smith, G., Swart, S., Lugtenberg, B. J., and Kijne, J. W., 1992, Molecular mechanisms of attachment of Rhizobium bacteria to plant roots, Mol. Microbiol. 20:2897–2903.CrossRefGoogle Scholar
  184. Solheim, B., and Fjellheim, K. E., 1984, Rhizobial polysaccharide-degrading enzymes from roots of legumes, Physiol. Plant 62:11–17.CrossRefGoogle Scholar
  185. Stacey, G., So, J. S., Roth, L. E., Lakshmi, S. B., and Carlson, R. W., 1991, A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation, Mol. Plant-Microbe Interact. 4:332–340.PubMedCrossRefGoogle Scholar
  186. Tolmasky, M. E., Staneloni, R. J., and Leloir, L. F., 1982, Lipid-bound saccharides in Rhizobium meliloti, J. Biol. Chem. 257:6751–5757.PubMedGoogle Scholar
  187. Truchet, G., Barker, D. G., Camut, S., de Billy, F., Vasse, J., and Huguet, T., 1989, Alfalfa nodulation in the absence of Rhizobium, Mol. Gen. Genet. 219:65–68.CrossRefGoogle Scholar
  188. Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., De Billy, F., Promé, J. C., and Dénarié, J., 1991, Sulphated lipooligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa, Nature 351:670–673.CrossRefGoogle Scholar
  189. Turgeon, B. G., and Bauer, W. D., 1985, Ultrastructure of infection-thread development during the infection of soybean by Rhizobium japonicum, Planta 174:3403–3406.Google Scholar
  190. Urzainqui, A., and Walker, G. C., 1992, Exogenous suppression of the symbiotic deficiencies of Rhizobium meliloti exo mutants, J. Bacteriol. 174:3403–3406.PubMedGoogle Scholar
  191. Uttaro, A. D., Cangelosi, G. A., Geremia, R. A., Nester, E. W., and Ugalde, R. A., 1990, Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens, J. Bacteriol. 172:1640–1646.PubMedGoogle Scholar
  192. VandenBosch, K. A., Bradley, D. J., Knox, J. P., Perotto, S., Butcher, G. W., and Brewin, N. J., 1989a, Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots, EMBO J. 8:335–242.PubMedGoogle Scholar
  193. VandenBosch, K. A., Brewin, N. J., and Kannenberg, E. L., 1989b, Developmental regulation of a Rhizobium cell surface antigen during growth of pea root nodules, J. Bacteriol. 171:4537–4542.PubMedGoogle Scholar
  194. van Eijsden, R., Diaz, C. L., de Pater, B. J., and Kijne, J. W., 1995, Sugar-binding activity of pea (Pisum sativum) lectin is essential for heterologous infection of transgenic white clover hairy roots by Rhizobium leguminosarum biovar viciae, Plant Mol. Biol. 29:431–439.PubMedCrossRefGoogle Scholar
  195. van Spronsen, P. C., Bakhuizen, R., van Brussel, A. A., and Kijne, J. W., 1994, Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process, Eur. J. Cell Biol. 64:88–94.PubMedGoogle Scholar
  196. Varik, A., 1993, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology 3:97–130.CrossRefGoogle Scholar
  197. Vasse, J., DeBilly, F., Camut, S., and Truchet, J., 1990, Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules, J. Bacteriol. 172:4295–4306.PubMedGoogle Scholar
  198. Vesper, S. J., and Bauer, D. W., 1986, Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soybean roots, Appl. Environ. Microbiol. 52:134–141.PubMedGoogle Scholar
  199. Vesper, S. L., Malik, N. S. A., and Bauer, W. D., 1987, Transposon mutants of Bradyrhizobium japonicum altered in attachment to host roots, Appl. Environ. Microbiol. 53:1959–1961.PubMedGoogle Scholar
  200. Vincent, J. M., 1980, Factors controlling the legume-Rhizobium symbiosis, in Nitrogen Fixation, Vol. 2 (W. H. Newton and W. H. Orme-Johnson, eds.), pp. 103–129, University Park Press, Baltimore, Maryland.Google Scholar
  201. Wang, Y., and Hollingsworth, R. I., 1994, The structure of the O-antigenic chain of the lipopolysaccharide of Rhizobium trifolii 4s, Carbohydr. Res. 260:305–317.PubMedCrossRefGoogle Scholar
  202. Whitfield, C., 1995, Biosynthesis of lipopolysaccharide O-antigens, Trends Microbiol. 3:178–185.PubMedCrossRefGoogle Scholar
  203. Williams, M. N., Hollingsworth, R. I., Klein, S., and Signer, E. R., 1990, The sybiotic defect of Rhizobium meliloti exopolysaccharide mutants is suppressed by IpsZ,+ a gene involved in lipopolysaccharide biosynthesis, J. Bacteriol. 172:2622–2632.PubMedGoogle Scholar
  204. Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D. H., Meade, J. H., Emerick, A. W., Bruner, R., Ben-Bassat, A., and Tal, R., 1990, Genetic organization of the cellulose synthase operon in Acetobacter xylinum, Proc. Natl. Acad. Sci. USA 87:8130–8184.PubMedCrossRefGoogle Scholar
  205. Yang, C., 1992, Ultrastructure of infection mode of Rhizobium meliloti exopolysaccharide mutant in alfalfa, Acta Microbiol. Sin. 32:191–197.Google Scholar
  206. Yang, C., Signer, E. R., and Hirsch, A. M., 1992, Nodules initiated by Rhizobium meliloti exopolysaccharide mutants lack a discrete, persistent nodule meristem, Plant Physiol. 98:143–151.PubMedCrossRefGoogle Scholar
  207. York, G. M., and Walker, G. C., 1997, The Rhizobium meliloti exoK gene and prsD/prsE/exsH genes are components of independent degradative pathways which contribute to production of low-molecular-weight succinoglycan, Mol. Microbiol. 25:117–134.PubMedCrossRefGoogle Scholar
  208. Zevenhuizen, L. P. T. M., 1986, Selective synthesis of polysaccharides by Rhizobium trifolii, strain TA-1, FEMS Microbiol. Lett. 35:43–47.CrossRefGoogle Scholar
  209. Zevenhuizen, L. P., and Faleschini, P., 1991, Effect of the concentration of sodium chloride in the medium on the relative proportions of poly-and oligo-saccharides excreted by Rhizobium meliloti strain YE-2SL, Carbohydr. Res. 209:203–209.PubMedCrossRefGoogle Scholar
  210. Zevenhuizen, L. P. T. M., and van Neerven, A. R. W., 1983, Gel-forming capsular polysaccharide of Rhizobium leguminosarum and Rhizobium trifolii, Carbohydr. Res. 124:166–171.CrossRefGoogle Scholar
  211. Zevenhuizen, L. P. T. M., Scholten-Koerselman, I., and Posthumus, M. A., 1980, Lipopolysaccharides of Rhizobium, Arch. Microbiol. 125:1–8.CrossRefGoogle Scholar
  212. Zhan, H. J., and Leigh, J. A., 1990, Two genes that regulate exopolysaccharide production in Rhizobium meliloti, J. Bacteriol. 172:5254–5259.PubMedGoogle Scholar
  213. Zhan, H. J., Levery, S. B., Lee, C. C., and Leigh, J. A., 1989, A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion, Proc. Natl. Acad. Sci. USA 86:3055–3059.PubMedCrossRefGoogle Scholar
  214. Zhan, H. J., Lee, C. C., and Leigh, J. A., 1991, Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations, J. Bacteriol. 173:7391–7394.PubMedGoogle Scholar
  215. Zhang, Y., Hollingsworth, R. I., and Priefer, U. B., 1992, Characterization of structural defects in the lipopolysaccharides of symbiotically impaired Rhizobium leguminosarum biovar viciae VF-39 mutants, Carbohydr. Res. 231:261–271.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Karsten Niehaus
    • 1
  • Anke Becker
    • 1
  1. 1.Lehrstuhl für Genetik, Fakultät für BiologieUniversität BielefeldBielefeldGermany

Personalised recommendations