Cell-Activation Responses to Cytomegalovirus Infection

Relationship to the Phasing of CMV Replication and to the Induction of Cellular Damage
  • Thomas Albrecht
  • I. Boldogh
  • M. Fons
  • C. H. Lee
  • S. AbuBakar
  • J. M. Russell
  • W. W. Au
Part of the Subcellular Biochemistry book series (SCBI, volume 15)


Evidence for the presence of cytomegaloviruses (CMV) as pathogenic agents in man was first obtained by examination of tissues derived from still-born infants that demonstrated severe developmental abnormalities (Jesionek and Kiolemenoglou, 1904; Ribbert, 1904; Lowenstein, 1907). The salivary glands and other tissues of these infants contained enlarged cells with prominent nuclear inclusions (NI) that were eventually recognized as pathognomonic for this disease, i.e., cytomegalic inclusion disease (CID). It was not until about half a century after the initial descriptions of the cytomegalic cells that the virus responsible for these manifestations was isolated and partially characterized (Smith, 1956; Rowe et al., 1956, Weller et al., 1957). Cell cultures infected with freshly isolated or laboratory-adapted CMV demonstrated the characteristic enlarged cells with eosinophilic NI (Weller et al., 1957). Noting the unique and characteristic features of the cytopathology induced by these viruses, Weller et al. (1960) suggested that this group of viruses be renamed cytomegaloviruses (CMV).


Human Cytomegalovirus Herpes Simplex Virus Premature Chromosome Condensation Abortive Infection Cytomegalic Inclusion Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AbuBakar, S., Au, W. W., Legator, M. S., and Albrecht, T., 1988, Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells, Environ. Mutagen. 12:409–420.Google Scholar
  2. Adam, E., Melnick, J. L., Probtsfield, J. L., Pétrie, B. L., Burek, J., Bailey, K. R., McCollum, C. H., DeBakey, M. E., 1987, High levels of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis, Lancet 2:291–293.PubMedGoogle Scholar
  3. Albrecht, T. B., 1973, Studies on the oncogenic potential of human cytomegalovirus, Ph.D. thesis, Pennsylvania State University, University Park, Pennsylvania.Google Scholar
  4. Albrecht, T., and Rapp, F., 1973, Malignant transformation of hamster embryo fibroblasts following exposure to ultraviolet-irradiated human cytomegalovirus, Virology 55:53–61.PubMedGoogle Scholar
  5. Albrecht, T., St. Jeor, S. C., Funk, F. D., and Rapp, F., 1974, Multiplicity reactivation of human cytomegalovirus inactivated by ultra-violet light, Int. J. Radiat. Biol. 26:445–454.Google Scholar
  6. Albrecht, T., Nachtigal, M., St. Jeor, S. C., and Rapp, F., 1976, Induction of cellular DNA synthesis and increased mitotic activity in Syrian hamster embryo cells abortively infected with human cytomegalovirus, J. Gen. Virol. 30:167–177.PubMedGoogle Scholar
  7. Albrecht, T., Cavallo, T., Cole, N. L., and Graves, K., 1980a, Cytomegalovirus: Development and progression of cytopathic effects in human cell culture, Lab. Invest. 42:1–7.PubMedGoogle Scholar
  8. Albrecht, T., Li, M.-L., Cole, N., Downing, E., and Funk, F. D., 1980b, Replication of human cytomegalovirus at supraoptimal temperatures is dependent on the virus strain, multiplicity of infection and phase of virus replication, J. Gen. Virol. 51:83–97.PubMedGoogle Scholar
  9. Albrecht, P., Torrey, E. F., Boone, E., Hicks, J. T., and Daniel, N., 1980c, Raised cytomegalovirus antibody level in cerebrospinal fluid of schizophrenic patients, Lancet 2:769–772.PubMedGoogle Scholar
  10. Albrecht, T., Speelman, D. J., and Steinsland, O., 1981, Similarities between human cytomegalovirus induced cell rounding and contraction of myofibroblasts or smooth muscle cells, in: Abstracts of the Sixth International Workshop on Herpesviruses, July 27-31, Bologna, Italy, p. 71.Google Scholar
  11. Albrecht, T., Speelman, D. J., and Steinsland, O. S., 1983, Similarities between cytomegalovirusinduced cell rounding and contraction of smooth muscle cells, Life Sci. 32:2273–2278.PubMedGoogle Scholar
  12. Albrecht, T., Li, J.-L., Speelman, D., Ball, R., Nokta, M., Fons, M., Lee, C. H., Steinsland, O., Thompson, W. C., and Carney, D. H., 1984, Cellular responses ta human cytomegalovirus infection, in: CMV: Pathogenesis and Prevention of Human Infection (S. A. Plotkin, S. Michelson, J. S. Pagano, and F. Rapp, eds.) [Birth Defects Orig. Art. Ser. 20:21-34], Liss, New York.Google Scholar
  13. Albrecht, T., Nokta, M., Lee, C. H., and Fons, M., 1985, Possible correlations between the phasing of cellular responses to cytomegalovirus (CMV) infection, development of nuclear inclusions (NI), and the pattern of CMV DNA synthesis, in: Abstracts of the Tenth International Herpesvirus Workshop, August 11–16, Ann Arbor, Michigan, p. 58.Google Scholar
  14. Albrecht, T., Lee, C. H., Speelman, D. J., and Steinsland, O. S., 1987, Inhibition of cytomegalovirus replication by smooth-muscle relaxing agents, Proc. Soc. Exp. Biol. Med. 186:41–46.PubMedGoogle Scholar
  15. Alkon, D. L., and Rasmussen, H., 1988, A spatial-temporal model of cell activation, Science 239:998–1004.PubMedGoogle Scholar
  16. Berridge, M. J., 1987, Inositol lipids and cell proliferation, Biochim. Biophys. Acta 907:33–45.PubMedGoogle Scholar
  17. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature (Lond.) 312:315–320.Google Scholar
  18. Bhalla, R. C., Webb, R. C., Singh, D., and Brock, T., 1978, Role of cAMP in rat aortic microsomal phosphorylation and calcium uptake, Am. J. Physiol. 234:H508–H514.PubMedGoogle Scholar
  19. Blumenthal, D. K., and Stull, J. T., 1980, Activation of skeletal muscle myosin light chain kinase by calcium (2+) and calmodulin, Biochemistry 19:5608–5614.PubMedGoogle Scholar
  20. Boldogh, I., Gonczol, E., Gartner, L., and Vaczi, L., 1978a, Stimulation of host DNA synthesis and induction of early antigens by ultraviolet light irradiated human cytomegalovirus, Arch. Virol. 58:289–299.PubMedGoogle Scholar
  21. Boldogh, I., Gonczol, E., and Vaczi, L., 1978b, Lack of correlation between HCMV-and cellular DNA synthesis, in: Abstracts of the International Congress for the Hungarian Society for Microbiology, Budapest, Hungary, p. 91.Google Scholar
  22. Boldogh, I., Gonczol, E., and Vaczi, L., 1978c, Transformation of hamster embryonic fibroblast cells by UV-irradiated human cytomegalovirus, Acta Microbiol. Acad. Sci. Hung. 25:269–275.PubMedGoogle Scholar
  23. Boom, R., Sol, C. J. A., Minnaar, R. P., Geelen, J. L. M. C., Raap, A. K., and van der Noordaa, J., 1988, Induction of gene expression under human cytomegalovirus immediate early enhancer-promoter control by inhibition of protein synthesis is cell cycle-dependent, J. Gen. Virol. 69:1179–1193.PubMedGoogle Scholar
  24. Boynton, A. L., and Whitfield, J. F., 1983, The role of cyclic AMP in cell proliferation: A critical; assessment of the evidence, Adv. Cyclic Nucl. Res. 15:193–294.Google Scholar
  25. Brusik, D., 1986, Genotoxic effects in cultured mammalian cells produced by low pH treatment conditions and increased ion concentrations, Environ. Mutagen. 8:879–886.Google Scholar
  26. Cassel, D., Whiteley, B., Zhuang, Y. X., and Glaser, L., 1985, Mitogen-independent activation of Na+/H+ exchange in human epidermoid carcinoma A431 cells: Regulation by medium osmolarity, J. Cell. Physiol. 122:178–186.PubMedGoogle Scholar
  27. Cavallo, T., Graves, K., Cole, N. L., and Albrecht, T., 1981, Cytomegalovirus: An ultrastructural study of the morphogenesis of nuclear inclusions in human cell culture, J. Gen. Virol. 56:97–104.PubMedGoogle Scholar
  28. Chua, C. C., Carter, T. H., and St. Jeor, S. C., 1981, Transcription of the human cytomegalovirus genome in productively infected cells, J. Gen. Virol. 56:1–11.PubMedGoogle Scholar
  29. Cipollaro, M., Corsale, G., Esposito, A., Ragucci, E., Staino, N., Giordano, G. G., and Pagano, G., 1986, Sublethal pH decrease may cause genetic damage to eucaryotic cells: A study on sea urchins and Salmonella typhimurium, Teratogen. Carcinogen. Mutagen. 6:275–287.Google Scholar
  30. Crowell, R. L., 1987, Cellular receptors in virus infections, ASM News 53:422–425.Google Scholar
  31. DeMarchi, J. M., 1983a, Post-transcriptional control of human cytomegalovirus gene expression, Virology 124:390–402.PubMedGoogle Scholar
  32. DeMarchi, J. M., 1983b, Correlation between stimulation of host cell DNA synthesis by human cytomegalovirus and lack of expression of a subset of early virus genes, Virology 129:274–286.PubMedGoogle Scholar
  33. DeMarchi, J. M., and Kaplan, A. S., 1976, Replication of human cytomegalovirus DNA: Lack of dependence on cell DNA synthesis, J. Virol 18:1063–1070.PubMedGoogle Scholar
  34. DeMarchi, J. M., and Kaplan, A. S., 1977a, Physiological state of human embryonic lung cells affects their response to human cytomegalovirus, J. Virol. 23:126–132.PubMedGoogle Scholar
  35. DeMarchi, J. M., and Kaplan, A. S., 1977b, The role of defective cytomegalovirus particles in the induction of host cell DNA synthesis, Virology 82:93–99.PubMedGoogle Scholar
  36. DeMarchi, J. M., Schmidt, C. A., and Kaplan, A. S., 1980, Patterns of transcription of human cytomegalovirus in permissively infected cells, J. Virol. 35:277–286.PubMedGoogle Scholar
  37. Diamond, J., and Blisard, K. S., 1976, Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery, Mol. Pharmacol. 12:688–692.Google Scholar
  38. Dulbecco, R. L., Hartwell, H., and Vogt, M., 1965, Induction of cellular DNA synthesis by polyoma virus, Proc. Natl. Acad. Sci. USA 53:403–410.PubMedGoogle Scholar
  39. Dunham, E. W., Haddox, M. K., and Goldberg, N. D., 1974, Alteration of vein cyclic 3′: 5′ nucleotide concentrations during changes in contractility, Proc. Natl. Acad. Sci. USA 71:815–819.PubMedGoogle Scholar
  40. Estes, J. E., and Huang, E.-S., 1977, Stimulation of cellular thymidine kinases by human cytomegalovirus, J. Virol. 24:13–21.PubMedGoogle Scholar
  41. Fioretti, A., Furukawa, T., Santoli, D., and Plotkin, S.A., 1973, Nonproductive infection of guinea pig cells with human cytomegalovirus, J. Virol. 11:998–1003.PubMedGoogle Scholar
  42. Fong, C. K. Y., 1982, Ultrastructural localization of cytomegalovirus DNA synthesis in infected guinea-pig cells, J. Gen. Virol. 60:235–245.PubMedGoogle Scholar
  43. Fons, M., and Albrecht, T., 1986, Cytomegalovirus: The relationship of nucleocapsid assembly to the organization of cellulae, Arch. Virol. 91:351–356.PubMedGoogle Scholar
  44. Fons, M., Cerruti-Sola, S., Hunt, P., Nokta, M., and Albrecht, T., 1987, The effect of amiloride on CMV-induced Na+/K+ ATPase activity, cytomegaly and replication, in: Abstracts of the Twelfth International Herpesvirus Workshop, July 30—August 4, Philadelphia, p. 381.Google Scholar
  45. Fons, M. P., Graves, K., Cavallo, T., Pollard, R., and Albrecht, T., 1986, Human cytomegalovirus: Development and progression of nuclear inclusions by primary clinical isolates and laboratoryadapted strains, Proc. Soc. Exp. Biol. Med. 181:416–422.PubMedGoogle Scholar
  46. Furukawa, T., Fioretti, A., and Plotkin, S. A., 1973, Growth characteristics of cytomegalovirus in human fibroblasts with demonstration of protein synthesis early in viral replication, J. Virol. 11:991–997.PubMedGoogle Scholar
  47. Furukawa, T., Tanaka, S., and Plotkin, S. A., 1975, Stimulation of macromolecular synthesis in guinea pig cells by human CMV, Proc. Soc. Exp. Biol. Med. 148:211–214.PubMedGoogle Scholar
  48. Furukawa, T., Sakuma, S., and Plotkin, S. A., 1976, Human cytomegalovirus infection of WI-38 cells stimulates mitochondrial DNA synthesis, Nature (Lond.) 262:414–416.Google Scholar
  49. Garnett, H. M., 1981, Increased ability of human embryonic fibroblasts to accumulate Ca2+ due to cytomegalovirus infection, Cytobios 31:107–116.PubMedGoogle Scholar
  50. Geder, L., Lausch, R., O’Neill, F., and Rapp, F., 1976, Oncogenic transformation of human embryo lung cells by human cytomegalovirus, Science 192:1134–1137.PubMedGoogle Scholar
  51. Gerber, P., and Hoyer, B. H., 1971, Induction of cellular DNA synthesis in human leucocytes by Epstein-Barr virus, Nature (Lond.) 231:46–47.Google Scholar
  52. Gershon, D., Sachs, L., and Winocour, E., 1966, The induction of cellular DNA synthesis by simian virus 40 in contact-inhibited and X-irradiated cells, Proc. Natl Acad. Sci. USA 56:918–925.PubMedGoogle Scholar
  53. Goodheart, C. R., McAllister, R. M., and Filbert, J. E., 1964, Human Cytomegaolvirus: DNA synthesis and migration in infected cells studied autoradiographically, Virology 23:603–608.PubMedGoogle Scholar
  54. Grinstein, S., Cohen, S., Goetz, J. D. and Rothstein, A. 1985. Osmotic and phorbol ester-induced activation of Na+/H+ exchange: Possible role of protein phosphorylation in lymphocyte volume regulation. J. Cell. Biol. 101:269–276.PubMedGoogle Scholar
  55. Haddox, M. K., Magun, B. E., and Russell, D. H., 1980, Differential expression of type I and type II cyclic AMP-dependent protein kinases during cell cycle and cyclic AMP-induced growth arrest, Proc. Natl. Acad. Sci. USA 77:3445–3449.PubMedGoogle Scholar
  56. Harnden, D. G., 1974, Viruses, chromosome and tumors: The interaction between viruses and chromosomes, in: Chromosomes and Cancer (J. German, ed.), pp. 151–191, Wiley, New York.Google Scholar
  57. Hedley-Whyte, E. T., and Craighead, J. E., 1965, Generalized cytomegalic inclusion disease after renal homotransplantation, N. Engl. J. Med. 272:473–475.PubMedGoogle Scholar
  58. Heldin, C.-H., Westermark, B., and Westeson, A., 1979, Platelet-derived growth factor: Purification and partial characterization, Proc. Natl. Acad. Sci. USA 76:3722–3726.PubMedGoogle Scholar
  59. Hill, R. B., Jr., Rowlands, D. T., Jr., and Rifkind, D., 1964, Infectious pulmonary disease in patients receiving immunosuppressive therapy for organ transplantation, N. Engl. J. Med. 271:1021–1027.PubMedGoogle Scholar
  60. Hirai, K., and Watanabe, Y., 1976, Induction of α-type DNA polymerase in human cytomegalovirus-infected WI-38 cells, Biochim. Biophys. Acta 447:328–339.PubMedGoogle Scholar
  61. Hirai, K., Furukawa, T., and Plotkin, S. A., 1976, Induction of DNA polymerase in WI-38 and guinea pig cells infected with human cytomegalovirus (HCMV), Virology 70:251–255.PubMedGoogle Scholar
  62. Hirai, K., Maeda, F., and Watanabe, Y., 1977, Expression of early virus functions in human cytomegalovirus infected HEL cells: Effect of ultraviolet light-irradiation of the virus, J. Gen. Virol. 38:121–133.Google Scholar
  63. Hittelman, W. W., Rao, P. N., and McCredie, K. B., 1981, Premature chromosome condensation studies in human leukemia, in: Genes, Chromosomes and Neoplasia (F. E. Arrighi, P. W. Rao, and E. Stubblefield, eds.), pp. 379–403, Raven, New York.Google Scholar
  64. Huang, E.-S., 1975, Human cytomegalovirus. III. Virus-induced DNA polymerase, J. Virol. 16:298–310.PubMedGoogle Scholar
  65. Huang, E.-S., and Roche, J. K., 1978, Cytomegalovirus DNA and adenocarcinoma of the colon: Evidence for latent viral infection, Lancet 1:957–960.PubMedGoogle Scholar
  66. Huang, E.-S., Boldogh, I., and Mar, E.-C, 1983, Human cytomegaloviruses: Evidence for possible association with human cancer, in: Viruses Associated with Human Cancer (L. A. Phillips, ed.), pp. 161–194, Dekker, New York.Google Scholar
  67. Huang, E.-S., Mar, E.-C, Boldogh, I., and Baskar, J., 1984, The oncogenicity of human cytomegalovirus, in: CMV: Pathogenesis and Prevention of Human Infection (S. A. Plotkin, S. Michelson, J. S. Pagano, and F. Rapp, eds.) [Birth Defects Orig. Art. Ser. 20:193-211], Liss, New York.Google Scholar
  68. Isom, H. J., 1979, Stimulation of ornithine decarboxylase by human cytomegalovirus, J. Gen. Virol. 42:265–278.PubMedGoogle Scholar
  69. Jesionek, A., and Kiolemenoglou, B., 1904, Ueber einen Befund von protozoenartigen Gebilden in den Organen eines hereditar-leutischen Fötus, MMW 51:1905–1907.Google Scholar
  70. Johnson, R. T., and Rao, P. N., 1970, Mammalian cell fusion: Induction of premature chromosome condensation in interphase nuclei, Nature (Lond.) 226:717–722.Google Scholar
  71. Kaiser, C.-J., and Radsak, K., 1987, Inhibition by monensin of human cytomegalovirus DNA replication, Arch. Virol. 94:229–245.PubMedGoogle Scholar
  72. Kamata, T., Tanaka, S., and Watanabe, Y., 1978, Human cytomegalovirus-induced chromatin factors responsible for changes in template activity and structure of infected cell chromatin, Virology 90:197–208.PubMedGoogle Scholar
  73. Kamata, T., Tanaka, S., and Watanabe, Y., 1979, Characterization of the human cytomegalovirus-induced chromatin factor responsible for activation of host cell chromatin template, Virology 97:224–228.PubMedGoogle Scholar
  74. Kamiya, S., Tanaka, J., Ogura, T., Ogura, H., Sato, H., and Hatano, M., 1986, Rabbit kidney cells abortively infected with human cytomegalovirus are arrested in mitotic phase, Arch. Virol. 89:131–144.PubMedGoogle Scholar
  75. Kaplan, D. R., Whitman, M., Schaffhausen, B., Raptis, L., Garcea, R. L., Pallas, D., Roberts, T. M., and Cantley, L., 1986, Phosphatidylinositol metabolism and polyoma-mediated transformation, Proc. Natl. Acad. Sci. USA 83:3624–3628.PubMedGoogle Scholar
  76. Katsuki, S., and Murad, F., 1977, Regulation of adenosine cyclic 3′,5′-monophosphate and guanosine cyclic 3′,5′-monophosphate levels and contractility in bovine trachéal smooth muscle, Mol. Pharmacol. 13:330–341.PubMedGoogle Scholar
  77. Kattenburg, D. M., and Daniel, E. E., 1984, Effects of an endogenous cyclic AMP-dependent protein kinase catalytic subunit on Ca-uptake by plasma membrane vesicles from rat mesenteric artery, Blood Vessels 21:257–266.PubMedGoogle Scholar
  78. Kilpatrick, B. A., and Huang, E.-S., 1977, Human cytomegalovirus genome: Partial denaturation map and organization of genome sequences, J. Virol. 24:261–276.PubMedGoogle Scholar
  79. L’Allemain, G., Paris, S., and Pouyssegur, J., 1984, Growth factor action and intracellular pH regulation in fibroblasts: Evidence for a major role of the Na/H antiport, J. Biol. Chem. 259:5809–5815.PubMedGoogle Scholar
  80. L’Allemain, G., Paris, S., and Pouyssegur, J., 1985, Role of a Na+-dependent CI-/HCO3-exchange in regulation of intracellular pH in fibroblasts, J. Biol. Chem. 260:4877–4883.PubMedGoogle Scholar
  81. Landini, M. P., 1984, Early enhanced glucose uptake in human cytomegalovirus-infected cells, J. Gen. Virol. 65:1229–1232.PubMedGoogle Scholar
  82. Landini, M. P., and Rugolo, M., 1984, Increased accumulation of a lipophilic cation (tetraphenylphosphonium) in human embryo fibroblasts after infection with cytomegalovirus, J. Gen. Virol. 65:2269–2272.PubMedGoogle Scholar
  83. Lang, D. J., Montagnier, L., and Latarjet, R., 1974, Growth in agarose of human cells infected with cytomegalovirus, J. Virol. 14:327–332.PubMedGoogle Scholar
  84. Lee, C. H., and Albrecht, T., 1987, Cyclic nucleotide responses to cytomegalovirus (CMV) infection: Partial correlation with inhibition of CMV yields by papaverine, in: Abstracts of the Twelfth International Herpesvirus Workshop, July 30-August 4, Philadelphia, p. 382.Google Scholar
  85. Lee, T.-P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3′: 5′-cyclic monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle, Proc. Natl. Acad. Sci. USA 69:3287–3291.PubMedGoogle Scholar
  86. Levine, A. J., and Burger, M. M., 1972, A working hypothesis explaining the maintenance of the transformed state by SV40 and polyoma, J. Theor. Biol. 37:435–446.Google Scholar
  87. Levine, S., and Sagik, B. P., 1956, The interactions of Newcastle disease virus (NDV) with chick embryo tissue culture cells: Attachment and growth, Virology 2:57–68.PubMedGoogle Scholar
  88. Li, J.-L. H., and Albrecht, T., 1982, Characterization of human cells persistently infected with cytomegalovirus and exposed to a chemical carcinogen, Int. J. Cancer 29:49–55.PubMedGoogle Scholar
  89. Lowenstein, C., 1907, Uber protozoenartige Gebilde in den Organen von Kindern, Zentralbl. Allg. Pathol. Anat. 18:513–518.Google Scholar
  90. Luleci, G., Skizli, M., and Gunalp, A., 1980, Selective chromosomal damage caused by human cytomegalovirus, Acta Virol. 24:341–345.PubMedGoogle Scholar
  91. Macher, A. M., Reichert, C. M., Straus, S. E., Longo, D. L., Parrillo, J., Lane, H. C., Fauci, A. S., Rook, A. H., Manischewitz, J. F., and Quinnan, G. V., Jr., 1983, Death in the AIDS patient: Role of cytomegalovirus, N. Engl. J. Med. 309:1454.PubMedGoogle Scholar
  92. MacNab, J. C. M., 1987, Herpes simplex virus and human cytomegalovirus: Their role in morphological transformation and genital cancers, J. Gen. Virol. 68:2525–2550.PubMedGoogle Scholar
  93. Majno, G., 1979, The story of the myofibroblasts, Am. J. Surg. Pathol. 3:535–542.PubMedGoogle Scholar
  94. McGavran, M. H., and Smith, M. G., 1965, Ultrastructural, cytochemical, and microchemical observations on cytomegalovirus (salivary gland virus) infection of human cells in tissue culture, Exp. Mol. Pathol. 4:1–10.Google Scholar
  95. Melnick, J. L., Lewis, R., Wimberly, I., Kaufman, R. H., and Adam, E., 1978, Association of cytomegalovirus (CMV) infection with cervical cancer: Isolation of CMV from cell cultures derived from cervical biopsy, Intervirology 10:115–119.PubMedGoogle Scholar
  96. Michell, R. H., 1986, Inositol lipids and their role in receptor function: History and general principles, in: Receptor Biochemistry and Methodology: Phosphoinositides and Receptor Mechanisms (J. W. Putney, Jr., ed.), Vol. 7, pp. 1–24, Liss, New York.Google Scholar
  97. Moolenaar, W. H., Tsien, R. Y., van der Saag, P. T., and de Laat, S. W., 1983, Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts, Nature (Lond.) 304:645–648.Google Scholar
  98. Moummi, C., Magous, R., Strosberg, D., and Bali, J. P., 1988, Muscarinic receptors in isolated smooth muscle cells from gastric antrum, Biochem. Pharmacol. 37:1363–1369.PubMedGoogle Scholar
  99. Nachtigal, M., and Nachtigal, S., 1978, Interactions between human herpesviruses and host cell chromosomes, Arch. Roum. Pathol. Exp. Microbiol. 37:223–249.PubMedGoogle Scholar
  100. Nishiyama, Y., Maeno, K., and Yoshida, S., 1983, Characterization of human cytomegalovirus-induced DNA polymerase and the associated 3′-to-5\ exonuclease, Virology 124:221–231.PubMedGoogle Scholar
  101. Nokta, M., Eaton, D., Steinsland, O. S., and Albrecht, T., 1987, Ca2+ responses in cytomegalovirus-infected fibroblasts of human origin, Virology 157:259–267.PubMedGoogle Scholar
  102. Nokta, M., Fons, M. P., Eaton, D. C., and Albrecht, T., 1988, Cytomegalovirus: Sodium entry and development of cytomegaly in human fibroblasts, Virology 164:411–419.PubMedGoogle Scholar
  103. Owen, N. E., and Prastein, M. L., 1985, Na/K/Cl cotransport in cultured human fibroblasts, J. Biol. Chem. 260:1445–1451.PubMedGoogle Scholar
  104. Paris, S., and Pouyssegur, J., 1983, Biochemical characterization of the amiloride-sensitive Na+/H+ antiport in Chinese hamster lung fibroblasts, J. Biol. Chem. 258:3503–3508.PubMedGoogle Scholar
  105. Radsak, K., and Schmitz, B., 1980, Unimpaired histone synthesis in human fibroblasts infected by human cytomegalovirus, Med. Microbiol. Immunol. 168:63–72.PubMedGoogle Scholar
  106. Radsak, K. D., and Weder, D., 1981, Effect of 2-deoxy-D-glucose on cytomegalovirus-induced DNA synthesis in human fibroblasts, J. Gen. Virol. 57:33–42.PubMedGoogle Scholar
  107. Radsak, K., and Wiegandt, H., 1984, Glycosphingolipid synthesis in human fibroblasts infected by cytomegalovirus, Virology 138:300–309.PubMedGoogle Scholar
  108. Rao, P. N., 1982, The phenomenon of premature chromosome condensation, in: Premature Chromosome Condensation (P. N. Rao, R. T. Johnson, and K. Sperling, eds.), pp. 1–41, Academic, New York.Google Scholar
  109. Rapp, F., and Robbins, D., 1984, Cytomegalovirus and human cancer, in: CMV: Pathogenesis and Prevention of Human Infection (S. A. Plotkin, S. Michelson, J. S. Pagano, and F. Rapp, eds.) [Birth Defects Orig. Art. Ser. 20:175-192], Liss, New York.Google Scholar
  110. Rapp, F., Geder, L., Murasko, D., Lausch, R., Ladda, R., Huang, E.-S., and Webber, M. J., 1975, Long-term persistence of cytomegalovirus genome in cultured human cells of prostatic origin, J. Urol. 16:982–990.Google Scholar
  111. Rasmussen, H., 1981, Calcium and cAMP as Synarchic Messengers, Wiley, New York.Google Scholar
  112. Rasmussen, H., and Barrett, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64:938–984.PubMedGoogle Scholar
  113. Reuss, L., Cassel, D., Rothenberg, P., Whiteley, B., Mancuso, D., and Glaser, L., 1986, Mitogens and ion fluxes, in: Current Topics in Membranes and Transport (L. J. Mandel and D. J. Benos, eds.), pp. 3–54, Academic, New York.Google Scholar
  114. Ribbert, H., 1904, Uber protozoenartige Zellen in der Niere eines syphilitischen Neugeboren und in der Parotis von Kindern, Zentralbl. Allg. Pathol. Anat. 15:945–948.Google Scholar
  115. Rifkind, D., 1965, Cytomegalovirus infection after renal transplantation, Arch, Intern. Med. 116:554–558.Google Scholar
  116. Rowe, W. P., Hartley, J. W., Waterman, S., Turner, H. C., and Heubner, R. J., 1956, Cytopathogenic agent resembling human salivary gland virus recovered from tissue cultures of human adenoids, Proc. Soc. Exp. Biol. Med. 92:418–424.PubMedGoogle Scholar
  117. Rozengurt, E., 1986, Early signals in the mitogenic response, Science 234:161–166.PubMedGoogle Scholar
  118. Rozengurt, E., and Mendoza, S., 1980, Monovalent ion fluxes and the control of cell proliferation in cultured fibroblasts, Ann. NY Acad. Sci. 339:175–190.PubMedGoogle Scholar
  119. Ruebner, B. H., Hirano, T., Slusser, R. J., and Medearis, D. N., Jr., 1965, Human cytomegalovirus infection: Electron microscopic and histochemical changes in cultures of human fibroblasts, Am. J. Pathol. 46:477–496.PubMedGoogle Scholar
  120. Sand, T. E., Bronstad, CO., Digernes, V., and Christoffersen, T., 1981, Evidence for stimulatory and inhibitory effects of cAMP on DNA synthesis in primary cultures of adult hat hepatocytes, Adv. Cyclic Nucl. Res. 14:683.Google Scholar
  121. Schultz, G., Schultz, K.-D., Böhme, E., and Kreye, V. A. W., 1978, The possible role of cyclic GMP in the actions of hormones and drugs on smooth muscle tone: Effects of exogenous cyclic GMP derivatives, in: Advances in Pharmacology and Therapeutics: IonsCyclic NucleotidesCholinergy (J. C. Stoclet, ed.), Vol. 3, pp. 113–122, Pergamon, Oxford.Google Scholar
  122. Seven, B., Landini, M. P., and Govoni, E., 1988, Human cytomegalovirus morphogenesis: An ultrastructural study of the late cytoplasmic phases, Arch. Virol. 98:51–64.Google Scholar
  123. Sha’afi, R. I., and Naccache, P. H., 1985, Relationship between calcium, arachidonic acid metabolites and neutrophil activation, in: Calcium in Biological Systems (R. P. Rubin, G. B. Weiss, and J. W. Putney, eds.), pp. 137–146, Plemem, New York.Google Scholar
  124. Skou, J. C., 1965, Enzymatic basis for active transport of Na+ and K+ across cell membrane, Physiol. Rev. 45:596–617.PubMedGoogle Scholar
  125. Smith, J. B., and Rozengurt, E., 1978, Serum stimulates the Na+, K+ pump in quiescent fibroblasts by increasing Na+ entry, Proc. Natl. Acad. Sci. USA 75:5560–5564.PubMedGoogle Scholar
  126. Smith, K. O., and Rasmussen, L., 1963, Morphology of cytomegalovirus (salivary gland virus), J. Bacteriol. 85:1315–1325.Google Scholar
  127. Smith, M. G., 1956, Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease, Proc. Soc. Exp. Biol. Med. 92:424–430.PubMedGoogle Scholar
  128. Stich, H. F., and Yohn, D. S., 1970, Viruses and chromosomes, Prog. Med. Virol. 12:78–127.Google Scholar
  129. Stinski, M. F., 1978, Sequence of protein synthesis in cells infected by human cytomegalovirus: Early and late virus-induced polypeptides, J. Virol. 26:686–701.PubMedGoogle Scholar
  130. St. Jeor, S. C., and Hutt, R., 1977, Cell DNA replication as a function in the synthesis of human cytomegalovirus, J. Gen. Virol. 37:65–73.PubMedGoogle Scholar
  131. St. Jeor, S. C., and Rapp, F., 1973a, Cytomegalovirus replication in cells pretreated with 5-iodo-2′-deoxyuridine, J. Virol. 11:983–990.Google Scholar
  132. St. Jeor, S. C., and Rapp, F., 1973b, Cytomegalovirus: Conversion of nonpermissive cells to a permissive state for virus replication, Science 181:1060–1061.PubMedGoogle Scholar
  133. St. Jeor, S. C., Albrecht, T. B., Funk, F. D., and Rapp, F., 1974, Stimulation of cellular DNA synthesis by human cytomegalovirus, J. Virol. 13:353–362.Google Scholar
  134. Takahashi, M., Van Hoosier, G. L., and Trentin, J. J., 1966, Stimulation of DNA synthesis in human and hamster cells by human adenovirus types 12 and 5, Proc. Soc. Exp. Biol. Med. 122:740–749.PubMedGoogle Scholar
  135. Tanaka, S., Furukawa, T., and Plotkin, S. A., 1975, Human cytomegalovirus stimulates host cell RNA synthesis, J. Virol. 15:297–304.PubMedGoogle Scholar
  136. Tanaka, S., Ihara, S., and Watanabe, Y., 1978, Human cytomegalovirus induces DNA-dependent RNA polymerases in human diploid cells, Virology 89:179–185.PubMedGoogle Scholar
  137. Tartakoff, A. M., 1983, Perturbation of the structure and function of the Golgi complex by monovalent carboxylic ionophores, Methods Enzymol. 98:47–59.PubMedGoogle Scholar
  138. Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes, Nature (Lond.) 295:68–71.Google Scholar
  139. Tsunoda, Y., Takeda, H., Otaki, T., Asaka, M., Nakagaki, I., and Sasaki, S., 1988, A role for Ca2+ in mediating hormone-induced biphasic pepsinogen secretion from the chief cell determined by luminescent and fluorescent probes and X-ray microprobe, Biochim. Biophys. Acta 941:83–101.PubMedGoogle Scholar
  140. Tyms, A. S., and Williamson, J. D., 1980, Polyamine metabolism in MRC-5 cells infected with human cytomegalovirus, J. Gen. Virol. 48:183–191.PubMedGoogle Scholar
  141. Valyi-Nagy, T., Bandi, Z., Boldogh, I., and Albrecht, T., 1988, Hydrolysis of inositol lipids: An early signal of human cytomegalovirus infection, Arch. Virol. 101:199–207.PubMedGoogle Scholar
  142. Waner, J. L., and Weiler, T. H., 1974, Behavior of human cytomegaloviruses in cell cultures of bovine and simian origin, Proc. Soc. Exp. Biol. Med. 145:379–384.PubMedGoogle Scholar
  143. Wathen, M. W., Thomsen, D. R., and Stinski, M. F., 1981, Temporal regulation of human cytomegalovirus transcription at immediate early and early times after infection, J. Virol. 38:446–459.PubMedGoogle Scholar
  144. Webber, C. E., and Whalley, J. M., 1977, Chromosome aberrations induced by a marsupial herpes virus in cultured marsupial mouse cells, Exp. Cell. Res. 106:437–440.PubMedGoogle Scholar
  145. Weiler, T. H., 1971, The cytomegaloviruses: Ubiquitous agents with protean clinical manifestations, N. Engl. J. Med. 285:203–214, 267-274.Google Scholar
  146. Weiler, T. H., Macauley, J. C., Craig, J. M, and Wirth, P., 1957, Isolation of intranuclear inclusion producing agents from infants with illnesses resembling cytomegalic inclusion disease, Proc. Soc. Exp. Biol. Med. 94:4–12.Google Scholar
  147. Weiler, T. H., Hanshaw, J. B., and Scott, D. E., 1960, Serologic differentiation of viruses responsible for cytomegalic inclusion disease, Virology 12:130–132.Google Scholar
  148. Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., and Roberts, T. M., 1985, Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation, Nature (Lond.) 315:239–242.Google Scholar
  149. Wright, H. T., Jr., and Goodheart, C. R., 1964, Human cytomegalovirus. Morphology by negative staining, Virology 23:419–424.PubMedGoogle Scholar
  150. Yamanishi, K., and Rapp, F., 1979, Production of plasminogen activator by human and hamster cells infected with human cytomegalovirus, J. Virol. 31:315–419.Google Scholar
  151. Yoon, J. W., Kim, S. M., Hahn, E. C., and Kenyon, A. J., 1976, Lymphoproliferative diseases of fowl: Chromosome breaks caused in lymphocytes by JM-V herpesvirus, J. Natl. Cancer Inst. 56:757–762.PubMedGoogle Scholar
  152. Zavada, V., Erban, V., Rezacova, D., and Vonka, V., 1976, Thymidine kinase in cytomegalovirus infected cells, Arch. Virol. 52:333–339.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Thomas Albrecht
    • 1
  • I. Boldogh
    • 1
  • M. Fons
    • 1
  • C. H. Lee
    • 1
  • S. AbuBakar
    • 1
  • J. M. Russell
    • 2
  • W. W. Au
    • 3
  1. 1.Department of MicrobiologyUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Department of Physiology and BiophysicsUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Department of Preventive Medicine and Community HealthUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations