Advertisement

The Coronavirus Surface Glycoprotein

  • David Cavanagh
Part of the The Viruses book series (VIRS)

Abstract

Coronaviruses are frequently claimed to have a characteristic morphology, including the possession of a “club-shaped” surface projection or spike (S) glycoprotein. However, in common with other aspects of the coronaviruses, the group exhibits variation with respect to the shape, size, and distribution of the S protein on the virion surface. Davies and Macnaughton (1979) described the spikes of infectious bronchitis virus (IBV) and human coronavirus (HCV) 229E as being “tear-drop” shaped and widely spaced, whereas those of murine hepatitis virus (MHV) type 3 were mostly “cone-shaped” and closely spaced, although in some MHV-3 preparations the spikes were more bulbous. Dimensions of S vary not only among the coronaviruses but also depending on the staining procedure; following potassium phosphotungstate staining all three viruses had spikes approximately 20 nm long and 10 nm wide at the bulbous end, except for the cone-shaped spikes of MHV, which had a diameter of only 5 nm (Davies and Macnaughton, 1979). The entire S protein has been observed after solubilization and purification (Sturman et al., 1980; Cavanagh, 1983c). The nonenvelope-associated S1 subunit of the IBV S protein can become detached from the virion (Stern and Sefton, 1982a; Cavanagh and Davis, 1986).

Keywords

Infectious Bronchitis Virus Mouse Hepatitis Virus Spike Protein Infectious Bronchitis Virus Strain Transmissible Gastroenteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, S., Kienzle, T. E., Lapps, W., and Brian, D. A., 1990, Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site, Virology 176:296.PubMedCrossRefGoogle Scholar
  2. Arpin, N., and Talbot, P. J., 1990, Molecular characterization of the 229E strain of human coronavirus, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 73–80, Plenum Press, New York.CrossRefGoogle Scholar
  3. Banner, L. R., Keck, J. G., and Lai, M. M. C., 1990, A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus, Virology 175:548.PubMedCrossRefGoogle Scholar
  4. Baybutt, H. N., Wege, H., Carter, M. J., and ter Meulen, V., 1984, Adaptation of coronavirus JHM to persistent infection of murine Sac(—) cells, J. Gen. Virol. 65:915.PubMedCrossRefGoogle Scholar
  5. Beushausen, S., Narindrasorasak, S., Sanwal, B. D., and Dales, S., 1987, In vivo and in vitro models of demyelinating disease: Activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes, J. Virol. 61:3795.PubMedGoogle Scholar
  6. Bingham, R. W., Madge, M. H., and Tyrrell, D. A., 1975, Haemagglutination by avian infectious bronchitis virus—a Coronavirus, J. Gen. Virol. 28:381.PubMedCrossRefGoogle Scholar
  7. Binns, M. M., Boursnell, M. E. G., Cavanagh, D., Pappin, D. J. C., and Brown, T. D. K., 1985, Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV, J. Gen. Virol. 66:719.PubMedCrossRefGoogle Scholar
  8. Binns, M. M., Boursnell, M. E. G., Tomley, F. M., and Brown, T. D. K., 1986, Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette, J. Gen. Virol. 67:2825.PubMedCrossRefGoogle Scholar
  9. Boireau, P., Cruciere, C., and Laporte, J., 1990, Nucleotide sequence of the glycoprotein S (E2) gene of the bovine enteric coronavirus; comparison with mouse hepatitis virus, J. Gen. Virol. 71:487.PubMedCrossRefGoogle Scholar
  10. Bosch, F. X., Garten, W., Klenk, H-D., and Rott, R., 1981, Proteolytic cleavage of influenza virus hemagglutinins: Primary structure of the connecting peptide between HA, and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses, Virology 113:725.PubMedCrossRefGoogle Scholar
  11. Britton, P., 1991, Coronavirus motif, Nature 353:394.PubMedCrossRefGoogle Scholar
  12. Britton, P., and Page, K. W., 1990, Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus, Virus Res. 18:71.PubMedCrossRefGoogle Scholar
  13. Britton, P., Mawditt, K. L., and Page, K. W., 1991, The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: Comparison with transmissible gastroenteritis virus genes, Virus Res. 21:181.PubMedCrossRefGoogle Scholar
  14. Brown, C. S., Welling-Wester, S., Feijlbrief, M., van Lent, J. W. M., and Spaan, W. J. M., 1994, Chimeric parvovirus B19 capsids for the presentation of foreign epitopes, Virology 198:477.PubMedCrossRefGoogle Scholar
  15. Callebaut, P. E., and Pensaert, M. B., 1980, Characterisation and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus, J. Gen. Virol. 48:193.PubMedCrossRefGoogle Scholar
  16. Callebaut, P., Correa, I., Pensaert, M., Jimenez, G., and Enjuanes, L., 1988, Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus, J. Gen. Virol. 69:1725.PubMedCrossRefGoogle Scholar
  17. Cavanagh, D., 1981, Structural polypeptides of coronavirus IBV, J. Gen. Virol. 53:93.PubMedCrossRefGoogle Scholar
  18. Cavanagh, D., 1983a, Coronavirus IBV glycopolypeptides: Size of their polypeptide moieties and nature of their oligosaccharides, J. Gen. Virol. 64:1187.PubMedCrossRefGoogle Scholar
  19. Cavanagh, D., 1983b, Coronavirus IBV: Further evidence that the surface projections are associated with two glycopolypeptides, J. Gen. Virol. 64:1787.PubMedCrossRefGoogle Scholar
  20. Cavanagh, D., 1983c, Coronavirus IBV: Structural characterisation of the spike protein, J. Gen. Virol. 64:2577.PubMedCrossRefGoogle Scholar
  21. Cavanagh, D., and Davis, P. J., 1986, Coronavirus IBV: Removal of spike glycoprotein S1 by urea abolishes infectivity and haemagglutination but not attachment to cells, J. Gen. Virol. 67:1443.PubMedCrossRefGoogle Scholar
  22. Cavanagh, D., and Davis, P. J., 1987, Coronavirus IBV: Relationships among recent European isolates studied by limited proteolysis of the virion glycopolypeptides, Avian Pathol. 16:1.PubMedCrossRefGoogle Scholar
  23. Cavanagh, D., and Davis, P. J., 1992. Sequence analysis of strains of avian infectious bronchitis coronavirus isolated during the 1960s in the UK, Arch. Virol. 130:471.CrossRefGoogle Scholar
  24. Cavanagh, D., Darbyshire, J. H., Davis, P. J., and Peters, R. W., 1984, Induction of humoral neutralising and haemagglutination-inhibiting antibody by the spike protein of avian infectious bronchitis virus, Avian Pathol. 13:573.PubMedCrossRefGoogle Scholar
  25. Cavanagh, D., Davis, P. J., and Pappin, D. J. C., 1986a, Coronavirus IBV glycopolypeptides: Loca-tional studies using proteases and saponin, a membrane permeabilizer, Virus Res. 4:145.PubMedCrossRefGoogle Scholar
  26. Cavanagh, D., Davis, P. J., Pappin, D. J. C., Binns, M. M., Boursnell, M. E. G., and Brown, T. D. K., 1986b, Coronavirus IBV: Partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41, Virus Res. 4:133.PubMedCrossRefGoogle Scholar
  27. Cavanagh, D., Davis, P. J., Darbyshire, J. H., and Peters, R. W., 1986c, Coronavirus IBV: Virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody or induce chicken tracheal protection, J. Gen. Virol. 67:1435.PubMedCrossRefGoogle Scholar
  28. Cavanagh, D., Davis, P. J., and Mockett, A. P. A., 1988, Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes, Virus Res. 11:141.PubMedCrossRefGoogle Scholar
  29. Cavanagh, D., Davis, P. J., and Cook, J. K. A., 1992a, Infectious bronchitis virus: Evidence for recombination within the Massachusetts serotype, Avian Pathol. 21:401.PubMedCrossRefGoogle Scholar
  30. Cavanagh, D., Davis, P. J., Cook, J. K. A., Li, D., Kant, A., and Koch, G., 1992b, Location of the amino acid differences in the S1 spike glycprotein subunit of closely related serotypes of infectious bronchitis virus, Avian Pathol. 21:33.PubMedCrossRefGoogle Scholar
  31. Chasey, D., and Alexander, D. J., 1976, Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells, Arch. Virol. 52:101.PubMedCrossRefGoogle Scholar
  32. Collins, A. R., Knobler, R. L., Powell, H., and Buchmeier, M. J., 1982, Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion, Virology 119:358.PubMedCrossRefGoogle Scholar
  33. Correa, I., Jimenez, G., Sune, C., Bullido, M. J., and Enjuanes, L., 1988, Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus, Virus Res. 10:77.PubMedCrossRefGoogle Scholar
  34. Correa, I., Gebauer, F., Bullido, M. J., Sune, C., Baay, M. F. D., Zwaagstra, K. A., Posthumus, W. P. A., Lenstra, J. A., and Enjuanes, L., 1990, Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus, J. Gen. Virol. 71:271.PubMedCrossRefGoogle Scholar
  35. Cyr-Coats, K. ST., Storz, J., Hussain, K. A., and Schnorr, K. L., 1988, Structural proteins of bovine coronavirus strain L9: Effects of the host cell and trypsin treatment, Arch. Virol. 103:35.CrossRefGoogle Scholar
  36. Dalziel, R. G., Lampert, P. W., Talbot, P. J., and Buchmeier, M. J., 1986, Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence, J. Virol. 59:463.PubMedGoogle Scholar
  37. Daniel, C., and Talbot, P. J., 1990, Protection of mice from lethal coronavirus MHV-A59 infection by monoclonal affinity-purified spike glycoprotein, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 205–210. Plenum Press, New York.CrossRefGoogle Scholar
  38. Daniel, C., Anderson, R., Buchmeier, M. J., Fleming, J. O., Spaan, W. J. M., Wege, H., and Talbot, P. J., 1993, Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of a complex tridimensional structure, J. Virol. 67:1185.PubMedGoogle Scholar
  39. Davies, H. A., and Macnaughton, M. R., 1979, Comparison of the morphology of three coronaviruses, Arch. Virol. 59:25.PubMedCrossRefGoogle Scholar
  40. Daya, M., Cervin, M., and Anderson, R., 1988, Cholesterol enhances mouse hepatitis virus-mediated cell fusion, Virology 163:276.PubMedCrossRefGoogle Scholar
  41. Dea, S., Garzon, S., and Tijssen, P., 1989a, Identification and location of the structural glycoproteins of a tissue culture-adapted turkey enteric coronavirus, Arch. Virol. 106:221.PubMedCrossRefGoogle Scholar
  42. Dea, S., Garzon, S., and Tijssen, P., 1989b, Intracellular synthesis and processing of the structural glycoproteins of turkey enteric coronavirus, Arch. Virol. 106:239.PubMedCrossRefGoogle Scholar
  43. De Groot, R. J., Maduro, J., Lenstra, J. A., Horzinek, M. C., van der Zeijst, B. A. M., and Spaan, W. J. M., 1987a, cDNA cloning and sequencing analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus, J. Gen. Virol. 68:2639.PubMedCrossRefGoogle Scholar
  44. De Groot, R. J., Luytjes, W., Horzinek, M. C., van der Zeijst, B. A. M., Spaan, W. J. M., and Lenstra, J. A., 1987b, Evidence for a coiled-coil structure in the spike proteins of coronaviruses, J. Mol. Biol. 196:963.PubMedCrossRefGoogle Scholar
  45. De Groot, R. J., Van Leen, R. W., Dalderup, M. J. M., Vennema, H., Horzinek, M. C., and Spaan, W. J. M., 1989, Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice, Virology 171:493.PubMedCrossRefGoogle Scholar
  46. Delmas, B., and Laude, H., 1990, Assembly of coronavirus spike protein into trimers and its role in epitope expression, J. Virol. 64:5367.PubMedGoogle Scholar
  47. Delmas, B., and Laude, H., 1991, Carbohydrate-induced conformational changes strongly modulate the antigenicity of coronavirus TGEV glycoproteins S and M, Virus Res. 20:107.PubMedCrossRefGoogle Scholar
  48. Delmas, B., Gelfi, J., and Laude, H., 1986, Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein, J. Gen. Virol. 67:1405.PubMedCrossRefGoogle Scholar
  49. Delmas, B., Godet, M., Gelfi, J., Rasschaert, D., and Laude, H., 1990a, Enteric coronavirus TGEV: Mapping of four major antigenic determinants in the amino half of peplomer protein E2, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 151–157, Plenum Press, New York.CrossRefGoogle Scholar
  50. Delmas, B., Rasschaert, D., Godet, M., Gelfi, J., and Laude, H., 1990b, Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S, J. Gen. Virol. 71:1313.PubMedCrossRefGoogle Scholar
  51. Deregt, D., and Babiuk, L. A., 1987, Monoclonal antibodies to bovine coronavirus: Characteristics and topographical mapping of neutralising epitopes on the E2 and E3 glycoproteins, Virology 161:410.PubMedCrossRefGoogle Scholar
  52. Deregt, D., Sabra, M., and Babiuk, L. A., 1987, Structural proteins of bovine coronavirus and their intracellular processing, J. Gen. Virol. 68:2863.PubMedCrossRefGoogle Scholar
  53. Deregt, D., Parker, M. D., Cox, G. C., and Babiuk, L. A., 1989a, Mapping of neutralizing epitopes to fragments of the bovine coronavirus E2 protein by proteolysis of antigen-antibody complexes, J. Gen. Virol. 70:647.PubMedCrossRefGoogle Scholar
  54. Deregt, D., Gifford, G. A., Khalidijaz, M., Watts, T. C., Gilchrist, J. E., Haines, D. M., and Babiuk, L. A., 1989b, Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: Demonstration of in vivo virus neutralizing activity, J. Gen. Virol. 70:993.PubMedCrossRefGoogle Scholar
  55. Diego, M. de, Laviada, M. D., Enjuanes, L., and Escribano, J. M., 1992, Epitope specificity of protective lactogenic immunity against swine transmissible gastroenteritis virus, J. Virol. 66: 6502.PubMedGoogle Scholar
  56. Duarte, M., and Laude, H., 1994, Sequence of the spike protein of the coronavirus porcine epidemic diarrhoea virus, J. Gen. Virol. 75:1195.PubMedCrossRefGoogle Scholar
  57. Egberink, H. F., Ederveen, J., Callebaut, P., and Horzinek, M. C., 1988, Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777, Am. J. Vet. Res. 49:1320.PubMedGoogle Scholar
  58. El-Ghorr, A. A., Snodgrass, D. R., Scott, F. M. M., and Campbell, I., 1989, A serological comparison of bovine coronavirus strains, Arch. Virol. 104:241.PubMedCrossRefGoogle Scholar
  59. Enjuanes, L., Gebauer, F., Correa, I., Bullido, M. J., Sune, C., Smerdon, C., Sanchez, C., Lenstra, J. A., Posthumus, W. P. A., and Meloen, R. H., 1990, Location of antigenic sites of the S-glycoprotein of transmissible gastroenteritis virus and their conservation in coronaviruses, in: Corona-viruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 159–172, Plenum Press, New York.CrossRefGoogle Scholar
  60. Fazakerley, J. K., Parker, S. E., Bloom, F., and Buchmeier, M. J., 1992, The V5A 13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system, Virology 187:178.PubMedCrossRefGoogle Scholar
  61. Fiscus, S. A., and Teramoto, Y. A., 1987a, Antigenic comparison of feline coronavirus isolates: Evidence for markedly different peplomer glycoproteins, J. Virol. 61:2607.PubMedGoogle Scholar
  62. Fiscus, S. A., and Teramoto, Y. A., 1987b, Functional differences in the peplomer glycoproteins of feline coronavirus isolates, J. Virol. 61:2655.PubMedGoogle Scholar
  63. Frana, M. F., Behnke, J. N., Sturman, L. S., and Holmes, K. V., 1985, Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Host-dependent differences in proteolytic cleavage and cell fusion, J. Virol. 56:912.PubMedGoogle Scholar
  64. Gallagher, T. M., and Buchmeier, M. J., 1990a, Monoclonal antibody-selected variants of MHV-4 contain substitutions and deletions in the E2 spike glycoprotein, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 385–393, Plenum Press, New York.CrossRefGoogle Scholar
  65. Gallagher, T. M., Parker, S. E., and Buchmeier, M. J., 1990, Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein, J. Virol. 64:731.PubMedGoogle Scholar
  66. Gallagher, T. M., Escarmis, C., and Buchmeier, M. J., 1991, Alteration of the pH dependence of coronavirus-induced cell fusion: Effect of mutations in the spike glycoprotein, J. Virol. 65:1916.PubMedGoogle Scholar
  67. Garwes, D. J., and Pocock, D. H., 1975, The polypeptide structure of transmissible gastroenteritis virus, J. Gen. Virol. 29:25.PubMedCrossRefGoogle Scholar
  68. Garwes, D. J., and Reynolds, D. J., 1981, The polypeptide structure of canine coronavirus and its relationship to porcine transmissible gastroenteritis virus, J. Gen. Virol. 52:153.PubMedCrossRefGoogle Scholar
  69. Garwes, D. J., Lucas, M. H., Higgins, D. A., Pike, B. V., and Cartwright, S. F., 1978/79, Antigenicity of structural components from porcine transmissible gastroenteritis virus, Vet. Microbiol. 3:179.CrossRefGoogle Scholar
  70. Garwes, D. J., Stewart, F., Cartwright, S. F., and Brown, L, 1988, Differentiation of porcine coronavirus from transmissible gastroenteritis virus, Vet. Rec. 122:86.PubMedCrossRefGoogle Scholar
  71. Gebauer, F., Posthumus, W. P. A., Correa, I., Sune, C., Smerdou, C., Sanchez, C. M., Lenstra, J. A., Meloen, R. H., and Enjuanes, L., 1991. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein, Virology 183:225.PubMedCrossRefGoogle Scholar
  72. Godet, M., Rasschaert, D., and Laude, H., 1991, Processing and antigenicity of entire and anchor-free spike glycoprotein S of coronavirus TGEV expressed by recombinant baculovirus, Virology 185:732.PubMedCrossRefGoogle Scholar
  73. Gomb, J. L., Hingley, S. T., and Weiss, S. R., 1993, Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal, J. Virol. 67:4504.Google Scholar
  74. Grosse, B., and Siddell, S. G., 1994, Single amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1 subunit-specific monoclonal antibody, Virology 202:814.PubMedCrossRefGoogle Scholar
  75. Hasony, H. J., and Macnaughton, M. R., 1981, Antigenicity of mouse hepatitis virus strain 3 subcomponents in C57 strain mice, Arch. Virol. 69:33.PubMedCrossRefGoogle Scholar
  76. Hogue, B. G., and Brian, D. A., 1986, Structural proteins of human respiratory coronavirus OC43, Virus Res. 5:131.PubMedCrossRefGoogle Scholar
  77. Hogue, B. G., King, B., and Brian, D. A., 1984, Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59, J. Virol. 51:384.PubMedGoogle Scholar
  78. Hohdatsu, T., Okada, S., and Koyama, H., 1991, Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses, Arch. Virol. 117:85.PubMedCrossRefGoogle Scholar
  79. Holmes, K. V., Doller, E. W., and Sturman, L. S., 1981, Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of virus glycoprotein, Virology 115:334.PubMedCrossRefGoogle Scholar
  80. Hopkins, S. R., 1974, Serological comparisons of strains of infectious bronchitis virus using plaque-purified isolants, Avian Dis. 18:231.PubMedCrossRefGoogle Scholar
  81. Horsburgh, B. C., Brierley, I., and Brown, T. D. K., 1992, Analysis of a 9.6 KB sequence from the 3’ end of a canine coronavirus genomic RNA, J. Gen. Virol. 75:2849.CrossRefGoogle Scholar
  82. Hussain, K. A., Storz, J., and Kousoulas, K. G., 1991, Comparison of bovine coronavirus (BCV) antigens: Monoclonal antibodies to the spike glycoprotein distinguish between vaccine and wild-type strains, Virology 183:442.PubMedCrossRefGoogle Scholar
  83. Jacobs, L., de Groote, R., van der Zeijst, B. A. M., Horzinek, M. C., and Spaan, W., 1987, The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): Comparison with the sequence of the peplomer protein of feline infectious perotonitis virus (FIPV), Virus Res. 8:363.PubMedCrossRefGoogle Scholar
  84. Jia, W., Karaca, K., Parrish, C. R., and Naqi, S. A., 1993a, Sequences of the spike protein gene of IBV strains Arkansas 99 (Genbank Accession Number L10384) and CV-T2 (Gen Bank Accession Number U04739).Google Scholar
  85. Jia, W., Karaca, K., Naqi, S., Fabricant, J., Bauman, B., and Andriguetto, A., 1993b, Significance of genetic recombination in the evolution of variant IBV in the field, in: Proceedings of the Xth International Congress of the World Veterinary Poultry Association, p. 146, (J. York, ed.), Australian Veterinary Poultry Society, SydneyGoogle Scholar
  86. Jimenez, G., Correa, I., Melgosa, M. P., Bullido, M. J., and Enjuanes, L., 1986, Critical epitopes in transmissible gastroenteritis virus neutralization, J. Virol. 60:131.PubMedGoogle Scholar
  87. Johnson, R. B., and Marquardt, W. W., 1975, The neutralizing characteristics of strains of infectious bronchitis virus as measured by the constant-virus variable-serum method in chicken tracheal cultures, Avian Dis. 19:82.PubMedCrossRefGoogle Scholar
  88. Jordi, B. J. A. M., Kremers, D. A. W. M., Kusters, H. G., and van der Zeijst, B. A. M., 1989, Nucleotide sequence of the gene coding for the peplomer protein (= spike protein) of infectious bronchitis virus, strain D274, Nucleic Acids Res. 17:6726.PubMedCrossRefGoogle Scholar
  89. Kant, A., Koch, G., Van Roozelaar, D. J., Kusters, J. G., Poelwijk, F. A. J., and van der Zeijst, B. A. M., 1992, Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopeptide, J. Gen. Virol. 73:591.PubMedCrossRefGoogle Scholar
  90. Karaca, K., Naqi, S., and Gelb, J., 1992, Production and characterization of monoclonal antibodies to three infectious bronchitis virus serotypes, Avian Dis. 36:903.PubMedCrossRefGoogle Scholar
  91. Keck, J. G., Soe, L. H., Makino, S., Stohlman, S. S., and Lai, M. M. C., 1988, RNA recombination of murine coronavirus: Recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus 2, J. Virol. 62:1989.Google Scholar
  92. Kemp, M. C., Hierholzer, J. C., Harrison, A., and Burks, J. S., 1984, Characterisation of viral proteins synthesized in 299E infected cells and effect(s) of inhibition of glycosylation and glycoprotein transport, Adv. Exp. Med. Biol. 173:65.PubMedCrossRefGoogle Scholar
  93. King, D. J., and Cavanagh, D., 1991, Infectious Bronchitis, in: Diseases of Poultry (B. W. Calnek, H. J. Barnes, C. W. Beard, W. M. Reid, and H. W. Yoder, Jr., eds.), pp 471– 484, Iowa State University Press, Ames.Google Scholar
  94. Koch, G., and Kant, A., 1990a, Binding of antibodies that strongly neutralize infectious bronchitis virus is dependent on the glycosylation of the viral peplomer protein, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 143–150, Plenum Press, New York.CrossRefGoogle Scholar
  95. Koch, G., and Kant, A., 1990b, Nucleotide and amino acid sequence of the S1 subunit of the spike glycoprotein of avian infectious bronchitis virus strain D3896, Nucleic Acids Res. 18:3063.PubMedCrossRefGoogle Scholar
  96. Koch, G., Hartog, L., Kant, A., and Van Roozelaar, D. J., 1990, Antigenic domains on the peplomer protein of avian infectious bronchitis virus: Correlation with biological functions, J. Gen. Virol. 71:1929.PubMedCrossRefGoogle Scholar
  97. Kooi, C., Mizzen, I., Alderson, C., Daya, M., and Anderson, R., 1988, Early events of importance in determining host cell permissiveness to mouse hepatitis virus infection, J. Gen. Virol. 69:1125.PubMedCrossRefGoogle Scholar
  98. Kooi, C., Cervin, M., and Anderson, R., 1991, Differentiation of acid pH-dependent and nondependent entry pathways for mouse hepatitis virus, Virology 180:108.PubMedCrossRefGoogle Scholar
  99. Koolen, M. J. M., Borst, M. A. J., Horzinek, M. C., and Spaan, W. J. M., 1990, Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection, J. Virol. 64:6270.PubMedGoogle Scholar
  100. Kryzstyniak, K., and Dupuy, J. M., 1984, Entry of mouse hepatitis virus 3 into cells, J. Gen. Virol. 65:227.CrossRefGoogle Scholar
  101. Kubo, H., and Taguchi, F., 1993, Expression of the S1 and S2 subunits of murine coronavirus JHMV spike protein by a vaccinia virus transient expression system, J. Gen. Virol. 74:2373.PubMedCrossRefGoogle Scholar
  102. Kubo, H., Takase-Yoden, S., and Taguchi, F., 1993, Neutralization and fusion inhibition activities of monoclonal antibodies specific for the S1 subunit of the spike protein of neuro virulent murine coronavirus JHMV cl-2 variant, J. Gen. Virol. 74:1421.PubMedCrossRefGoogle Scholar
  103. Künkel, F., and Herrler, G., 1993, Structural and functional analysis of the surface protein of human coronavirus OC43, Virology 195:195.PubMedCrossRefGoogle Scholar
  104. Kusters, J. G., Niesters, H. G. M., Lenstra, J. A., Horzinek, M. C., and van der Zeijst, B. A. M., 1989a, Phylogeny of antigenic variants of avian coronavirus IBV, Virology 169:217.PubMedCrossRefGoogle Scholar
  105. Kusters, J. G., Jager, E. J., Lenstra, J. A., Koch, G., Posthumus, W. P. A., Meloen, R. H., and van der Zeijst, B. A. M., 1989b, Analysis of an immunodominant region of infectious bronchitis virus, J. Immunol. 143:2692.PubMedGoogle Scholar
  106. Kusters, J. G., Jager, E. J., Niesters, H. G. M., and van der Zeijst, B. A. M., 1990, Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus, Vaccine 8:605.PubMedCrossRefGoogle Scholar
  107. Kwon, H., and Jackwood, M., 1993, Sequence of the spike S1 subunit gene of IBV strain JMK (Gen Bank Accession Number L14070) and Gray (Acc. No. L14069).Google Scholar
  108. La Monica, N., Banner, L. R., Morris, V. L., and Lai, M. M. C., 1991, Localization of extensive deletions in the structural genes of two neurotropic variants of murine coronavirus JHM, Virology 182:883.PubMedCrossRefGoogle Scholar
  109. Laviada, M. D., Videgain, S. P., Moreno, L., Alonso, F., Enjuanes, L., and Escribano, J. M., 1990, Expression of swine transmissible gastroenteritis virus envelope antigens on the surface of infected cells: Epitopes externally exposed, Virus Res. 16:247.PubMedCrossRefGoogle Scholar
  110. Lenstra, J. A., Kusters, J. G., Koch, G., Van Der Jeijst, B. A. M., 1989, Antigenicity of the peplomer protein of infectious bronchitis virus, Molecular Immunology 1:7.CrossRefGoogle Scholar
  111. Li, D., and Cavanagh, D., 1990, Role of pH in syncytium induction and genome uncoating of avian infectious bronchitis coronavirus (IBV), in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 33–36, Plenum Press, New York.CrossRefGoogle Scholar
  112. Li, D., and Cavanagh, D., 1992, Coronavirus IBV-induced membrane fusion occurs at near neutral pH, Arch. Virol. 122:307.PubMedCrossRefGoogle Scholar
  113. Luytjes, W., Sturman, L. S., Bredenbeek, P. J., Charite, J., van der Zeijst, B. A. M., Horzinek, M. C., and Spaan, W. J. M., 1987, Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site, Virology 161:479.PubMedCrossRefGoogle Scholar
  114. Luytjes, W., Geerts, D., Posthumus, W., Meloen, E., and Spaan, W., 1989, Amino acid sequence of a conserved neutralising epitope of murine coronaviruses, J. Virol. 63:1408.PubMedGoogle Scholar
  115. Martin, J. P., Chen, W., Obert, G., and Koehren, F., 1990, Characterization of attenuated mutants of MHV3: Importance of the E2 protein in organ tropism and infection of isolated liver cells, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 403–410, Plenum Press, New York.CrossRefGoogle Scholar
  116. Matsubara, Y., Watanabe, R., and Taguchi, F., 1991, Neurovirulence of six different murine coronavirus JHMV variants for rats, Virus Res. 20:45.PubMedCrossRefGoogle Scholar
  117. Michaud, L., and Dea, S., 1993, Characterization of monoclonal antibodies to bovine enteric coronavirus and antigenic variability among Quebec isolates, Arch. Virol. 131:455.PubMedCrossRefGoogle Scholar
  118. Mizzen, L., Hilton, A., Cheley, S., and Anderson, R., 1985, Attenuation of murine coronavirus infection by ammonium chloride, Virology 142:378.PubMedCrossRefGoogle Scholar
  119. Mockett, A. P. A., 1985, Envelope proteins of avian infectious bronchitis virus: Purification and biological properties, J. Virol. Methods 12:271.PubMedCrossRefGoogle Scholar
  120. Mockett, A. P. A., Cavanagh, D., and Brown, T. D. K., 1984, Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachusetts M41, J. Gen. Virol. 65:2281.PubMedCrossRefGoogle Scholar
  121. Morris, V. L., Tieszer, C., Mackinnon, J., and Percy, D., 1989, Characterisation of coronavirus JHM variants isolated from Wistar Furth rats with a viral-induced demyelinating disease, Virology 169:127.PubMedCrossRefGoogle Scholar
  122. Morris, V. L., Wilson, G. A. R., Mckenzie, C. E., Tieszer, C., La Monica, M., Banner, L., Percy, D., Lai, M. M. C., and Dales, S., 1990, Murine hepatitis virus JHM variants isolated from Wistar Fürth rats with viral-induced neurological disease, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 411–416, Plenum Press, New York.CrossRefGoogle Scholar
  123. Mounir, S., and Talbot, P. J., 1993, Molecular characterization of the S protein gene of human coronavirus OC43, J. Gen. Virol. 74:1981.PubMedCrossRefGoogle Scholar
  124. Nakanaga, K., Yamanouchi, K., and Fujiwara, K., 1986, Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection in mice, J. Virol. 59:165.Google Scholar
  125. Niesters, H. G. M., Lenstra, J. A., Spaan, W. J. M., Zijderveld, A. J., Bleumink-Pluym, N. M. C., Hong, F., Van Scharrenburg, G. J. M., Horzinek, M. C., and van der Zeijst, B. A. M., 1986, The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains, Virus Res. 5:253.PubMedCrossRefGoogle Scholar
  126. Noda, M., Yamashita, H., Koide, F., Kadoi, K., Omori, T., Asagi, M., and Inaba, Y., 1987, Hemagglutination with transmissible gastroenteritis virus, Arch. Virol. 96:109.PubMedCrossRefGoogle Scholar
  127. Noda, M., Koide, F., Asagi, M., and Inaba, Y., 1988, Physicochemical properties of transmissible gastroenteritis virus hemagglutinin, Arch. Virol. 99:163.PubMedCrossRefGoogle Scholar
  128. Oleszak, E. L., and Leibowitz, J. L., 1990, Fc receptor-like activity of mouse hepatitis virus E2 glycoprotein, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 51–58, Plenum Press, New York.CrossRefGoogle Scholar
  129. Oleszak, E. L., Perlman, S., and Leibowitz, J. L., 1992, MHV S peplomer protein expressed by a recombinant vaccinia virus vector exhibits IgG Fc-receptor activity, Virology 186:122.PubMedCrossRefGoogle Scholar
  130. Opstelten, D-J E., de. Groote, P., Horzinek, M. C., Vennema, H., and Rottier, P. J. M., 1993, Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins, J. Virol. 67:7394.PubMedGoogle Scholar
  131. Parker, S. E., Gallagher, T. M., and Buchmeier, M. J., 1989, Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus, Virology 173:664.PubMedCrossRefGoogle Scholar
  132. Parker, M. D., Yoo, D., Cox, G. J., and Babiuk, L. A., 1990, Primary structure of the S peplomer gene of bovine coronavirus and surface expression in insect cells, J. Gen. Virol. 71:263.PubMedCrossRefGoogle Scholar
  133. Parr, R. L., and Collisson, E. W., 1993, Epitopes on the spike protein of a nephropathogenic strain in infectious bronchitis virus, Arch. Virol. 133:369.PubMedCrossRefGoogle Scholar
  134. Patterson, S., and Bingham, R. W., 1976, Electron microscope observations on the entry of avian infectious bronchitis virus into susceptible cells, Arch. Virol. 52:191.PubMedCrossRefGoogle Scholar
  135. Payne, H. R., and Storz, J., 1988, Analysis of cell fusion induced by bovine coronavirus infection, Arch. Virol. 103:27.PubMedCrossRefGoogle Scholar
  136. Payne, H. R., Storz, J., and Henk, W. G., 1990, Initial events in bovine coronavirus infection: analysis through immunogold probes and lysosomotropic inhibitors, Arch. Virol. 114:175.PubMedCrossRefGoogle Scholar
  137. Pfleiderer, M., Routledge, E., and Siddell, S. G., 1990, Functional analysis of the coronavirus MHV-JHM surface glycoproteins in vaccinia virus recombinants, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 21–31, Plenum Press, New York.CrossRefGoogle Scholar
  138. Posthumus, W. P. A., Meloen, R. H., Enjuanes, L., Correa, I., Van Nieuwstadt, A. P., Kock, G., de Groot, R. J., Kusters, J. G., Luytjes, W., Spaan, W. J., van der Zeijst, B. A. M., and Lenstra, J. A., 1990a, Linear neutralizing epitopes on the peplomer protein of coronavirus, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 181–188, Plenum Press, New York.CrossRefGoogle Scholar
  139. Posthumus, W. P. A., Lenstra, J. A., Schaaper, W. M. M., Van Nieuwstadt, A. P., Enjuanes, L., and Meloen, R. H., 1990b, Analysis and simulation of a neutralising epitope of transmissible gastroenteritis virus, J. Virol. 64:3304.PubMedGoogle Scholar
  140. Posthumus, W. P. A., Lenstra, J. A., Van Nieuwstadt, A. P., Schaaper, W. M. M., van der Zeijst, B. A. M., and Meloen, R. H., 1991, Immunogenicity of peptides simulating a neutralization epitope of transmissible gastroenteritis virus, Virology 182:371.PubMedCrossRefGoogle Scholar
  141. Pulford, D. J., and Britton, P., 1991, Intracellular processing of the porcine coronavirus transmissible gastroenteritis virus spike protein expressed by recombinant vaccinia virus, Virology 182:765.PubMedCrossRefGoogle Scholar
  142. Raabe, T., Schelle-Prinz, B., and Siddell, S. G., 1990, Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV-229E, J. Gen. Virol. 71:1065.PubMedCrossRefGoogle Scholar
  143. Rasschaert, D., and Laude, H., 1987, The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus, J. Gen. Virol. 68:1883.PubMedCrossRefGoogle Scholar
  144. Rasschaert, D., Duarte, M., and Laude, H., 1990, Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions, J. Gen. Virol. 71:2599.PubMedCrossRefGoogle Scholar
  145. Roos, D. S., Duchala, C. S., Stephensen, C. B., Holmes, K. V., and Choppin, P. W., 1990, Control of virus-induced cell fusion by host cell lipid composition, Virology 175:345.PubMedCrossRefGoogle Scholar
  146. Rottier, P. J. M., Horzinek, M. C., and van der Zeijst, B. A. M., 1981, Viral protein synthesis in mouse hepatitis virus strain A59 infected cells: Effect of tunicamycin, J. Virol. 40:350.PubMedGoogle Scholar
  147. Routledge, E., Stauber, R., Pfleiderer, M., and Siddell, S. G., 1991, Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies, J. Virol. 65:254.PubMedGoogle Scholar
  148. Sanchez, C. M., Jimenez, G., Laviada, M. D., Correa, I., Sune, C., Bullido, M. J., Gebauer, F., Smerdou, C., Callebaut, P., Escribano, J. M., and Enjuanes, L., 1990, Antigenic homology among coronaviruses related to transmissible gastroenteritis virus, Virology 175:410.CrossRefGoogle Scholar
  149. Sawicki, S. G., 1987, Characterisation of a small plaque mutant of the A59 strain of mouse hepatitis virus defective in cell fusion, Adv. Exp. Med. Biol. 218:169.PubMedCrossRefGoogle Scholar
  150. Sawicki, S. G., and Sawicki, D. L., 1986, Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis, J. Virol. 57:328.PubMedGoogle Scholar
  151. Schmidt, I., Skinner, M., and Siddell, S., 1987, Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM, J. Gen. Virol. 68:47.PubMedCrossRefGoogle Scholar
  152. Schmidt, M. F. G., 1982, Acylation of viral spike glycoproteins: A feature of enveloped RNA viruses, Virology 116:327.PubMedCrossRefGoogle Scholar
  153. Schmidt, O. W., and Kenny, G. E., 1982, Polypeptides and functions of antigens from human coronaviruses 229E and OC43, Infect. Immun. 35:515.PubMedGoogle Scholar
  154. Schultze, B., Hess, R. G., Rott, R., Klenk, H. D., and Herrler, G., 1990, Isolation and characterization of the acetylesterase of hemagglutinating encephalomyelitis virus (HEV), in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 109–113, Plenum Press, New York.CrossRefGoogle Scholar
  155. Schultze, B., Gross, H-J., Brossmer, R., and Herrler, G., 1991, The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant, J. Virol. 65:6232.PubMedGoogle Scholar
  156. Schultze, B., Cavanagh, D., and Herrler, G., 1992. Neuraminidase treatment of avian infectious bronchitis coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containing receptors on erythrocytes, Virology 189:792.PubMedCrossRefGoogle Scholar
  157. Siddell, S. G., 1982, Coronavirus JHM: Tryptic peptide fingerprinting of virion proteins and intracellular polypeptides, J. Gen. Virol. 62:259.PubMedCrossRefGoogle Scholar
  158. Siddell, S. G., Wege, H., and Ter Meulen, V.T., 1983, The biology of coronaviruses, J. Gen. Virol. 64:761.PubMedCrossRefGoogle Scholar
  159. Simkins, R. A., Saif, L. J., and Weilnau, P. A., 1989, Epitope mapping and the detections of transmissible gastroenteritis viral proteins in cell culture using biotinylated monoclonal antibodies in a fixed-cell ELISA, Arch. Virol. 107:179.PubMedCrossRefGoogle Scholar
  160. Simkins, R. A., Weilnau, P. A., Bias, J., and Saif, L. J., 1992, Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV, Am. J. Vet. Res. 53:1253.PubMedGoogle Scholar
  161. Spaan, W., Cavanagh, D., and Horzinek, M. C., 1990, Coronaviruses, in: Immunochemistry of Viruses II (M. H. V. van Regenmortel and T. D. K. Brown, eds.), pp. 359–380, Elsevier, Amsterdam.Google Scholar
  162. Stauber, R., Pfleiderer, M., and Siddell, S., 1993, Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for fusion activity, J. Gen. Virol. 74:183.PubMedCrossRefGoogle Scholar
  163. Stern, D. F., and Sefton, B. M., 1982a, Coronavirus proteins: Biogenesis of avian infectious bronchitis virus virion proteins, J. Virol. 44 :794.PubMedGoogle Scholar
  164. Stern, D. F., and Sefton, B. M., 1982b, Coronavirus proteins: Structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins, J. Virol. 44:804.PubMedGoogle Scholar
  165. Storz, J., Rott, R., and Kaluza, G., 1981, Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment, Infect. Immun. 31:1214.PubMedGoogle Scholar
  166. Stuhler, A., Wege, H., and Siddell, S. G., 1991, Localization of antigenic sites on the surface glycoprotein of mouse hepatitis virus, J. Gen. Virol. 72:1655.PubMedCrossRefGoogle Scholar
  167. Sturman, L. S., Holmes, K. V., and Behnke, J., 1980, Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid, J. Virol. 33:449.PubMedGoogle Scholar
  168. Sturman, L. S., Ricard, C. S., and Holmes, K. V., 1985, Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments, J. Virol. 56:904.PubMedGoogle Scholar
  169. Sturman, L. S., Ricard, C. S., and Holmes, K. V., 1990, Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37°C correlates with virus aggregation and virus-induced cell fusion, J. Virol. 64:3042.PubMedGoogle Scholar
  170. Sutou, S., Sato, S., Okabe, T., Nakai, M., and Sasaki, N., 1988, Cloning and sequencing of genes encoding structural proteins of avian infectious bronchitis virus, Virology 65:589.CrossRefGoogle Scholar
  171. Taguchi, F., 1993, Fusion formation by the uncleaved spike protein of murine coronavirus JHMV variant cl-2, J. Virol. 67:1195.PubMedGoogle Scholar
  172. Taguchi, F., and Fleming, J. O., 1989, Comparison of six different murine coronavirus JHM variants by monoclonal antibodies against the E2 glycoprotein, Virology. 169:233.PubMedCrossRefGoogle Scholar
  173. Taguchi, F., Siddell, S. G., Wege, H., and Ter Meulen, V., 1985, Characterisation of a variant virus selected in rat brains after infection by coronavirus mouse hepatitis virus JHM, J. Virol. 54:429.PubMedGoogle Scholar
  174. Taguchi, F., Yoden, S., Siddell, S., and Kikuchi, T., 1990, Expression of spike protein of murine coronavirus JHM using baculovirus vector, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 211–216, Plenum Press, New York.CrossRefGoogle Scholar
  175. Taguchi, F., Ikeda, T., and Shida, H., 1992, Molecular cloning and expression of a spike protein of neurovirulent murine coronavirus JHMV variant cl-2, J. Gen. Virol. 73:1065.PubMedCrossRefGoogle Scholar
  176. Takase-Yoden, S., Kikuchi, T., Siddell, S. G., and Taguchi, F., 1990, Localization of major neutralizing epitopes on the S1 polypeptide of the murine coronavirus peplomer glycoprotein, Virus Res. 18:99.Google Scholar
  177. Talbot, P. J., and Buchmeier, M., 1985, Antigenic variation among murine coronaviruses: Evidence for polymorphism on the peplomer glycoprotein E2, Virus Res. 2:317.PubMedCrossRefGoogle Scholar
  178. Talbot, P. J., Salmi, A. A., Knobler, R. L., and Buchmeier, M. J., 1984, Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): Correlation with biological activities, Virology 132:250.PubMedCrossRefGoogle Scholar
  179. Talbot, P. J., Dionne, G., and Lacroix, M., 1988, Vaccination against lethal coronavirus-induced encephalitis with a synthetic decapeptide homologous to a domain in the predicted peplomer stalk, J. Virol. 62:3032.PubMedGoogle Scholar
  180. Tijssen, P., Verbeek, A. J., and Dea, S., 1990, Evidence of close relatedness between turkey and bovine coronaviruses, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 457–460, Plenum Press, New York.CrossRefGoogle Scholar
  181. Tomley, F. M., Mockett, A. P. A., Boursnell, M. E. G., Binns, M. M., Cook, J. K. A., Brown, T. D. K., and Smith, G. L., 1987, Expression of the infectious bronchitis virus spike protein by recombinant vaccinia virus and induction of neutralizing antibodies in vaccinated mice, J. Gen. Virol. 68:2291.PubMedCrossRefGoogle Scholar
  182. van Berlo, M. P., van den Brink, W. J., Horzinek, M. C., and van der Zeijst, B. A. M., 1987, Fatty acid acylation of viral proteins in murine hepatitis virus-infected cells, Arch. Virol. 95:123.PubMedCrossRefGoogle Scholar
  183. Van Dinter, S., and Flintoff, W. P., 1987, Rat glial C6 cells are defective in murine coronavirus internalization, J. Gen. Virol. 68:1677.PubMedCrossRefGoogle Scholar
  184. Vautherot, J. P., Madelaine, M. P., and Laporte, J., 1990, Topological and functional analysis of epitopes on the S(E2) and the HE(E3) glycoproteins of bovine enteric coronavirus, in: Corona- viruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 173–180, Plenum Press, New York.CrossRefGoogle Scholar
  185. Vautherot, J-P., Madelaine, M-P., Boireau, P., and Laporte, J., 1992a, Bovine coronavirus peplomer glycoproteins: Detailed antigenic analyses of S1, S2 and HE, J. Gen. Virol. 73:1725.PubMedCrossRefGoogle Scholar
  186. Vautherot, J-P., Laporte, J., and Boireau, P., 1992b, Bovine coronavirus S glycoprotein: Localisation of an immunodominant region at the amino-terminal end of S2, J. Gen. Virol. 73:3289.PubMedCrossRefGoogle Scholar
  187. Vennema, H., de Groot, R. J., Harbour, D. A., Dalderup, M., Gruffydd-Jones, T., Horzinek, M. C., and Spaan, W. J. M., 1990a, Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 217–222, Plenum Press, New York.CrossRefGoogle Scholar
  188. Vennema, H., Rottier, P. J. M., Heijnen, L., Godeke, G. J., Horzinek, M. C., and Spaan, W. J. M., 1990b, Biosynthesis and function of the coronavirus spike protein, in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 9–19, Plenum Press, New York.CrossRefGoogle Scholar
  189. Vennema, H., Heijnen, L., Zijderfeld, A., Horzinek, M. C., and Spaan, W. J. M., 1990c, Intracellular transport of recombinant coronavirus spike proteins: Implications for virus assembly, J. Virol. 64:339.PubMedGoogle Scholar
  190. Vennema, H., de Groot, R. J., Harbour, D. A., Dalderup, M., Gruffydd-Jones, T., Horzinek, M. C., and Spaan, W. J. M., 1990d, Early death after feline infectious peritonitis virus challenge due to a recombinant vaccinia virus immunization, J. Virol. 64:1407.PubMedGoogle Scholar
  191. Wang, L., Junker, D., Hock, L., Ebiary, E., and Collisson, W. W., 1994, Evolutionary implications of genetic variations in the S1 gene of infectious bronchitis virus, Virus Res. 34:327.PubMedCrossRefGoogle Scholar
  192. Wang, F-I., Fleming, J. O., and Lai, M. M. C., 1992, Sequence analysis of the spike protein gene of murine coronavirus variants: Study of genetic sites affecting neuropathogenicity, Virology 186:742.PubMedCrossRefGoogle Scholar
  193. Wang, L., Junker, D., and Collisson, E. W., 1993, Evidence of natural recombination within the S1 gene of infectious bronchitis virus, Virology 192:710.PubMedCrossRefGoogle Scholar
  194. Wege, H., Dorries, R., and Wege, H., 1984, Hybridoma antibodies to the murine coronavirus JHM: Characterisation of epitopes on the peplomer protein, J. Gen. Virol. 65:1931.PubMedCrossRefGoogle Scholar
  195. Weismuller, D. G., Sturman, L. S., Buchmeier, M. J., Fleming, J. O., and Holmes, K. V., 1990, Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions, J. Virol. 64:3051.Google Scholar
  196. Welch, S-K. W., and Saif, L. J., 1988, Monoclonal antibodies to a virulent strain of transmissible gastroenteritis virus: Comparison of reactivity with virulent and attenuated virus, Arch. Virol. 101:221.PubMedCrossRefGoogle Scholar
  197. Wesley, R. D., 1990, Nucleotide sequence of the E2-peplomer protein gene and partial nucleotide sequence of the upstream polymerase gene of transmissible gastroenteritis virus (Miller strain), in: Coronaviruses and Their Diseases (D. Cavanagh and T. D. K. Brown, eds.), pp. 301–306, Plenum Press, New York.CrossRefGoogle Scholar
  198. Wesley, R. D., Woods, R. D., and Cheung, A. K., 1991, Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus, J. Virol. 65:3369.PubMedGoogle Scholar
  199. Wesseling, J. G., Godeke, G-J., Schijns, V. E. C. J., Prevec, L., Graham, F. L., Horzinek, M. C., and Rottier, P. J. M., 1993, Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection, J. Gen. Virol. 74:2061.PubMedCrossRefGoogle Scholar
  200. Wesseling, J. G., Vennema, H., Godeke, G-J., Horzinek, M. C., Spaan, W. J. M., and Rottier, P. J. M., 1994, Nucleotide sequence and expression of the spike (S) gene of canine coronavirus and comparison with the S proteins of feline and porcine coronaviruses, J. Gen. Virol. 75:1789.PubMedCrossRefGoogle Scholar
  201. Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature 289:366.PubMedCrossRefGoogle Scholar
  202. Wysocka, M., Korngold, R., Yewdell, J., and Bennink, J., 1989, Target and effector cell fusion accounts for B lymphocyte-mediated lysis of mouse hepatitis virus-infected cells, J. Gen. Virol. 70:1465.PubMedCrossRefGoogle Scholar
  203. Yoo, D., Parker, M. D., and Babiuk, L. A., 1990, Analysis of the S spike (peplomer) glycoprotein of bovine coronavirus synthesized in insect cells, Virology 179:121.PubMedCrossRefGoogle Scholar
  204. Yoo, D., Parker, M. D., and Babiuk, L. A., 1991a, the S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells, Virology 180:395.PubMedCrossRefGoogle Scholar
  205. Yoo, D., Parker, M. D., Song, J., Cox, G. J., Deregt, D., and Babiuk, L. A., 1991b, Structural analysis of the conformational domains involved in neutralization of bovine coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses, Virology 183:91.PubMedCrossRefGoogle Scholar
  206. Zhang, X., Kousoulas, K. G., and Storz, J., 1991, Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses, Virology 183:397.PubMedCrossRefGoogle Scholar
  207. Zhang, X., Herbst, W., Kousoulas, K. G., and Storz, J., 1994, Comparison of the S genes and the biological properties of respiratory and enteropathogenic bovine coronaviruses, Arch. Virol. 134:421.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • David Cavanagh
    • 1
  1. 1.Institute for Animal Health, Division of Molecular BiologyCompton LaboratoryCompton, Newbury, BerkshireEngland

Personalised recommendations