Coronavirus Receptors

  • Kathryn V. Holmes
  • Susan R. Compton
Part of the The Viruses book series (VIRS)


Coronaviruses are highly species-specific in that they generally cause disease in only one host species (Möstl, 1990; Wege et al., 1982). However, experimental inoculation of other species with several coronaviruses, either by artificial routes such as intracerebral inoculation or in the highly susceptible neonatal period, can result in mild or asymptomatic infection as shown in Table I. In general, coronaviruses only infect cells from their normal host species or from species that are susceptible to infection with an antigenically related coronavirus (Table II). Host-dependent differences in susceptibility to coronavirus infection can be demonstrated within a species. For example, different strains of inbred mice vary greatly in their susceptibility to infection with various murine hepatitis virus (MHV) strains (Bang and Warwick, I960; Stohlman et al., 1980; Wege et al., 1982).


Tissue Tropism Mouse Hepatitis Virus Intestinal Brush Border Membrane Transmissible Gastroenteritis Virus Spike Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akashi, H., Inaba, Y, Miura, Y., Sato, K., Tokuhisa, S., Asagi, M., and Hayashi, Y, 1981, Propagation of the Kakegawa strain of bovine coronavirus in suckling mice, rats and hamsters, Arch. Virol. 67:367.PubMedCrossRefGoogle Scholar
  2. Ashmun, R. A., and Look, A. T., 1990, Metalloprotease activity of CD13/aminopeptidase N on the surface of human myeloid cells, Blood 75:462.PubMedGoogle Scholar
  3. Ashmun, R. A., Shapiro, L. H., and Look, A. T., 1992, Deletion of the zinc-binding motif of CD13/aminopeptidase N molecules results in loss of epitopes that mediate binding of inhibitory antibodies, Blood 79:3344.PubMedGoogle Scholar
  4. Bang, F. B., and Warwick, A., 1960, Mouse macrophages as host cells for the mouse hepatitis virus and the genetic basis of their susceptibility, Proc. Natl. Acad. Sci. USA 46:1065.PubMedCrossRefGoogle Scholar
  5. Barlough, J. E., Jacobson, R. H., and Scott, F. W., 1983, Macrotiter assay for coronavirus neutralizing activity in cats using a canine continuous cell line (A-72), Lab. Anim. Sci. 33:567.PubMedGoogle Scholar
  6. Barlough, J. E., Stoddart, C. A., Soresso, G. P., Jacobson, R. H., and Scott, F. W., 1984, Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus, Lab. Anim. Sci. 34:592.PubMedGoogle Scholar
  7. Barlough, J. E., Johnson-Lussenburg, C. M., Stoddart, C. A., Jacobson, R. H., and Scott, F. W., 1985, Experimental inoculation of cats with human coronavirus 229E and subsequent challenge with feline infectious peritonitis virus, Can. f. Comp. Med. 49:303.Google Scholar
  8. Barthold, S. W., 1986, Mouse hepatitis virus biology and epizootiology, in: Viral and Mycoplasmal Infections of Laboratory Rodents. Effects on Biomedical Research (P. N. Bhatt, R. O. Jacoby, H. C. Morse III, and A.E. New, eds.), p. 571, Academic Press, Orlando, FL.CrossRefGoogle Scholar
  9. Barthold, S. W., de Souza, M. S., and Smith, A. L., 1990, Susceptibility of laboratory mice to intranasal and contact infection with coronaviruses of other species, Lab. Anim. Sci. 40:481.PubMedGoogle Scholar
  10. Beauchemin, N. S., Benchimol, S., Cournoyer, D., Fuks, A., and Stanners, C. P., 1987, Isolation and characterization of full-length functional cDNA clones for human carcinoembyronic antigen, Mol. Cell Biol. 7(9):3221.PubMedGoogle Scholar
  11. Beauchemin, N., Turbide, C., Afar, D., Bell, J., Raymond, M., Stanners, C. P., and Fuks, A., 1989a, A mouse analogue of the human carcinoembryonic antigen, Cancer Res. 49:2017.PubMedGoogle Scholar
  12. Beauchemin, N., Turbide, C., Huang, J. Q., Benchimol, S., Jothy, S., Shirota, K., Fuks, A., and Stanners, C. P., 1989b, Studies on the function of carcinoembryonic antigen, in: The Carcinoembryonic Antigen Gene Family (A. Yachi and J.E. Shively, eds.), p. 49, Elsevier Science Publishers BV (Biomedical Division), New York.Google Scholar
  13. Bhatt, P.N., Jacoby, R. O., and Jonas, A. M., 1977, Respiratory infection of mice with sialodacryo-adenitis virus, a coronavirus of rats, Infect. Immun. 18:823.PubMedGoogle Scholar
  14. Boursnell, M. E., Binns, M. M., Brown, T. D., Cavanagh, D., and Tomley, F. M., 1989, Molecular biology of avian infectious bronchitis virus, Prog. Vet. Microbiol. Immunol. 5:65.PubMedGoogle Scholar
  15. Boyle, J. F., Weismiller, D. G., and Holmes, K. V., 1987, Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues, J. Virol. 61:185.PubMedGoogle Scholar
  16. Cavanagh, D., Davis, P. J., Darbyshire, J. H., and Peters, R. W., 1986, Coronavirus IBV: Virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection, J. Gen. Virol. 67:1435.PubMedCrossRefGoogle Scholar
  17. Cavanagh, D., Davis, P. J., and Mockett, A. P., 1988, Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes, Virus Res. 11:141.PubMedCrossRefGoogle Scholar
  18. Cheever, F. S., Daniels, J. B., Pappenheimer, A. M., and Bailey, O. T., 1949, A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. I. Isolation and biological properties of the virus, J. Exp. Med. 90:181.PubMedCrossRefGoogle Scholar
  19. Compton, S. R., 1988, Coronavirus Attachment and Replication, Ph.D. dissertation, The Uniformed Services University of the Health Sciences, Bethesda, MD.Google Scholar
  20. Compton, S. R., Stephensen, C. B., Snyder, S. W., Weismiller, D. G., and Holmes, K. V., 1992, Coronavirus species specificity: Murine coronavirus binds to a mouse-specific epitope on its carcinoembryonic antigen-related receptor glycoprotein, J. Virol. 66:7420.PubMedGoogle Scholar
  21. Coutelier, J.-P., Godfraind, C., Dveksler, G. S., Wysocka, M., Cardellichio, C. B., Noel, H., and Holmes, K. V., 1994, B lymphocyte and macrophage expression of carcinoembryonic antigen-related adhesion molecules that serve as receptors for murine coronavirus, Eur. f. Immunol. 24:1383.CrossRefGoogle Scholar
  22. Culic, O., Huang, Q. H., Flanagan, D., Hixson, D., and Lin, S. H., 1992, Molecular cloning and expression of a new rat liver cell-CAM105 isoform. Differential phosphorylation of isoforms, Biochem. J. 285:47.PubMedGoogle Scholar
  23. Daniel, C., Anderson, R., Buchmeier, M. J., Fleming, J. O., Spaan, W. J., Wege, H., and Talbot, P. J., 1993, Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of complex tridimensional structure, J. Virol. 67:1185.PubMedGoogle Scholar
  24. Dea, S., Roy, R. S., and Begin, M. E., 1980, Bovine coronavirus isolation and cultivation in continuous cell lines, Am. J. Vet. Res. 41:30.PubMedGoogle Scholar
  25. Dea, S., Garzon, S., and Tijssen, P., 1989, Isolation and trypsin-enhanced propagation of turkey enteric (bluecomb) coronaviruses in a continuous human rectal adenocarcinoma cell line, Am. J. Vet. Res. 50:1310.PubMedGoogle Scholar
  26. Dea, S., Verbeek, A., and Tijssen, P., 1991, Transmissible enteritis of turkeys: Experimental inoculation studies with tissue-culture-adapted turkey and bovine coronaviruses, Avian Dis. 35:767.PubMedCrossRefGoogle Scholar
  27. Delmas, B., and Laude, H., 1990, Assembly of coronavirus spike protein into trimers and its role in epitope expression, J. Virol. 64:5367.PubMedGoogle Scholar
  28. Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L. K., Sjöström, H., Noren, O., and Laude, H., 1992, Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV, Nature 357:417.PubMedCrossRefGoogle Scholar
  29. Delmas, B., Gelfi, J., Kut, E., Sjöström, H., Noren, O., and Laude, H., 1994, Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site, J. Virol. 68:5216.PubMedGoogle Scholar
  30. Dindzans, V. J., Skamene, E., and Levy, G. A., 1986, Susceptibility/resistance to mouse hepatitis virus strain 3 and macrophage procoagulant activity are genetically linked and controlled by two non-H2-linked genes, J. Immunol. 137:2355.PubMedGoogle Scholar
  31. Dveksler, G. S., Pensiero, M. N., Cardellichio, C. B., Williams, R. K., Jiang, G. S., Holmes, K. V., and Dieffenbach, C. W., 1991, Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV, J. Virol. 65:6881.PubMedGoogle Scholar
  32. Dveksler, G. S., Dieffenbach, C. W., Cardellichio, C. B., McCuaig, K., Pensiero, M. N., Jiang, G. S., Beauchemin, N., and Holmes, K. V., 1993a, Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus- A59, J. Virol. 67:1.PubMedGoogle Scholar
  33. Dveksler, G. S., Pensiero, M. N., Dieffenbach, C. W., Cardellichio, C. B., Basile, A. A., Elia, P. E., and Holmes, K. V, 1993b, Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor, Proc. Natl. Acad. Sci. USA 90:1716.PubMedCrossRefGoogle Scholar
  34. Evermann, J. F., Baumgartener, L., Ott, R. L., Davis, E. V, and McKeirnan, A. J., 1981, Characterization of a feline infectious peritonitis virus isolate, Vet. Pathol. 18:256.PubMedGoogle Scholar
  35. Gaertner, D. J., Smith, A. L., Paturzo, F. X., and Jacoby, R. O., 1991, Susceptibility of rodent cell lines to rat coronaviruses and differential enhancement by trypsin or DEAE-dextran, Arch. Virol. 118:57.PubMedCrossRefGoogle Scholar
  36. Gallagher, T. M., Parker, S. E., and Buchmeier, M. J., 1990, Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein, J. Virol. 64:731.PubMedGoogle Scholar
  37. Gallagher, T. M., Escarmis, C., and Buchmeier, M. J., 1991, Alteration of the pH dependence of coronavirus-induced cell fusion: Effect of mutations in the spike glycoprotein, J. Virol. 65:1916.PubMedGoogle Scholar
  38. Gerna, G., Cereda, P. M., Cattaneo, M. G., Battaglia, M., and Gerna, M. T., 1981, Antigenic and biological relationships between human coronavirus OC43 and neonatal calf diarrhoea coronavirus, J. Gen. Virol. 54:91.PubMedCrossRefGoogle Scholar
  39. Griffiths, G., and Rottier, P., 1992, Cell biology of viruses that assemble along the biosynthetic pathway, Semin. Cell Biol. 3:367.PubMedCrossRefGoogle Scholar
  40. Herrler, G., Reuter, G., Rott, R., Klenk, H. D., and Schauer, R., 1987, N-acetyl-9-O-acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes, Biol. Chem. Hoppe Seyler 368:451.PubMedCrossRefGoogle Scholar
  41. Herrler, G., Szepanski, S., and Schultze, B., 1991, 9–O- acetylated sialic acid, a receptor determinant for influenza C virus and coronaviruses, Behring. Inst. Mitt. 89:177.PubMedGoogle Scholar
  42. Hersh, L. B., 1985, Characterization of membrane-bound aminopeptidases from rat brain: Identification of the enkephalin-degrading aminopeptidase, J. Neurochem. 44:1427.PubMedCrossRefGoogle Scholar
  43. Hirahara, T., Yasuhara, H., Yamanaka, M., Matsui, O., Kimura, Y., Izumida, A., Yoshiki, K., Sato, K., Kodama, K., Sasaki, N., et al., 1992, Pathogenicity of porcine hemagglutinating encephalomyelitis virus for mouse and guinea pig, J. Vet. Med. Sci. 54:163.PubMedCrossRefGoogle Scholar
  44. Hogue, B. G., and Brian, D. A., 1986, Structural proteins of human respiratory coronavirus OC43, Virus Res. 5:131.PubMedCrossRefGoogle Scholar
  45. Holmes, K. V., Doller, E. W., and Sturman, L. S., 1981, Tunicamycin resistant glycosylation of coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein, Virology 115:334.PubMedCrossRefGoogle Scholar
  46. Horzinek, M. C., Lutz, H., and Pedersen, N. C., 1982, Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses, Infect. Immun. 37:1148.PubMedGoogle Scholar
  47. Ishii, H., Watanabe, I., Mukamoto, M., Kobayashi, Y., and Kodama Y., 1992, Adaption of transmissible gastroenteritis virus to growth in non-permissive Vero cells, Arch. Virol. 122:201.PubMedCrossRefGoogle Scholar
  48. Kant, A., Koch, G., van Roozelaar, D. J., Kusters, J. G., Poelwijk, F. A., and van der Zeijst, B. A., 1992, Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide, J. Gen. Virol 73:591.PubMedCrossRefGoogle Scholar
  49. Kapikian, A. Z., James, Jr., H. D., Kelly, S. J., King, L. M., Vaughn, A. L., and Chanock, R. M., 1972, Hemadsorption by coronavirus strain OC43, Proc. Soc. Exp. Biol. Med. 139:179.PubMedCrossRefGoogle Scholar
  50. Kaye, H.S., Yarbough, W. B., and Reed, C. J., 1975, Calf diarrhoea coronavirus, Lancet 2:509.PubMedCrossRefGoogle Scholar
  51. King, B., and Brian, D. A., 1982, Bovine coronavirus structural proteins, J. Virol. 42:700.PubMedGoogle Scholar
  52. King, B., Potts, B. J., and Brian, D. A., 1985, Bovine coronavirus hemagglutinin protein, Virus Res. 2:53.PubMedCrossRefGoogle Scholar
  53. Knobler, R. L., Tunison, L. A., and Oldstone, M. B., 1984, Host genetic control of mouse hepatitis virus type 4 (JHM strain) replication. I. Restriction of virus amplification and spread in macrophages from resistant mice, J. Gen. Virol. 65:1543.PubMedCrossRefGoogle Scholar
  54. Kunkel, F., and Herrler, G., 1993, Structural and functional analysis of the surface protein of human coronavirus OC43, Virology 195:195.PubMedCrossRefGoogle Scholar
  55. Lai, M. M., 1990, Coronavirus: Organization, replication and expression of genome, Annu. Rev. Microbiol. 44:303.PubMedCrossRefGoogle Scholar
  56. La Monica, N., Banner, L. R., Morris, V. L., and Lai, M. M., 1991, Localization of extensive deletions in the structural genes of two neurotropic variants of murine coronavirus JHM, Virology 182:883.PubMedCrossRefGoogle Scholar
  57. LaPorte, J., Bobulesco, P., and Rossi, F., 1980, Une lignee cellulaire particulierememt sensible a la replication du coronavirus enterique bovine: les cellules HRT18. Compt. Rend. Hebdomadaire Sances Acad Sci (Serie D) 290:623.Google Scholar
  58. Larson, D. J., Morehouse, L. G., Solorzano, R. F., and Kinden, D. A., 1979, Transmissible gastroenteritis in neonatal dogs: Experimental intestinal infection with transmissible gastroenteritis virus, Am. J. Vet. Res. 40:477.PubMedGoogle Scholar
  59. Laude, H., Van Reeth, K., and Pensaert, M., 1993, Porcine respiratory coronavirus: molecular features and virus-host interactions, Vet. Res. 24:125.PubMedGoogle Scholar
  60. Le Prevost, C., Levy-Leblond, E., Virelizier, J. L., and Dupuy, J. M., 1975, Immunopathology of mouse hepatitis virus type 3 infection. Role of humoral and cell-mediated immunity in resistance mechanisms, J. Immunol. 114:221.PubMedGoogle Scholar
  61. Lin, S. H., and Guidotti, G., 1989, Cloning and expression of a cDNA coding for a rat liver plasma membrane ecto-ATPase. The primary structure of the ecto-ATPase is similar to that of the human biliary glycoprotein I, J. Biol. Chem. 264:14408.PubMedGoogle Scholar
  62. Look, A. T., Peiper, S. C., Rebentisch, M. B., Ashmun, R. A., Roussel, M. F., Lemons, R. S., Le Beau, M. M., Rubin, C. M., and Sherr, C. J., 1986, Molecular cloning, expression, and chromosomal localization of the gene encoding a human myeloid membrane antigen (gpl50), J. Clin. Invest. 78:914.PubMedCrossRefGoogle Scholar
  63. Look, A. T., Ashmun, R. A., Shapiro, L. H., and Peiper, S. C., 1989, Human myeloid plasma membrane glycoprotein CD13 (gpl50) is identical to aminopeptidase N, J. Clin. Invest. 83:1299.PubMedCrossRefGoogle Scholar
  64. Lucas, A., Flintoff, W., Anderson, R., Percy, D., Coulter, M., and Dales, S., 1977, In vivo and in vitro models of demyelinating diseases: Tropism of the JHM strain of murine hepatitis virus for cells of glial origin, Cell 12:553.PubMedCrossRefGoogle Scholar
  65. Luytjes, W., Bredenbeek, P. J., Noten, A. F., Horzinek, M. C., and Spaan, W. J., 1988, Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between corona- viruses and influenza C virus, Virology 166:415.PubMedCrossRefGoogle Scholar
  66. McArdle, E, Bennett, M., Gaskell, R. M., Tennant, B., Kelly, D. F., and Gaskell, C. J., 1992, Induction and enhancement of feline infectious peritonitis by canine coronavirus, Am. J. Vet. Res. 53:1500.PubMedGoogle Scholar
  67. McClurkin, A. W., Stark, S. L., and Norman, J. O., 1970, Transmissible gastroenteritis (TGE) of swine: The possible role of dogs in the epizootiology of TGE, Can. J. Comp. Med. 34:347.PubMedGoogle Scholar
  68. McCuaig, K., Rosenberg, M., Nedellec, P., Turbide, C., and Beauchemin, N., 1993, Expression of the Bgp gene and characterization of mouse colon biliary glycoprotein isoforms, Gene 127:173.PubMedCrossRefGoogle Scholar
  69. McIntosh, K., Dees, J. H., Becker, W. B., Kapikian, A. Z., and Chanock, R. M., 1967, Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease, Proc. Natl. Acad. Sci. USA 57:933.PubMedCrossRefGoogle Scholar
  70. McIntosh, K., Kapikian, A. Z., Hardison, K. A., Hartley, J. W., and Chanock, R. M., 1969, Antigenic relationships among the coronaviruses of man between human and animal coronaviruses, J. Immunol. 102:1109.PubMedGoogle Scholar
  71. Möstl, K., 1990, Coronaviridae, pathogenetic and clinical aspects: An update, Comp. Immunol. Microbiol. Infect. Dis. 13:169.PubMedCrossRefGoogle Scholar
  72. Nedellec, P., Dveksler, G. S., Daniels, E., Turbide, C., Chow, B., Basile, A. A., Holmes, K. V., and Beauchemin, N., 1993, Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses, J. Virol 68:4525.Google Scholar
  73. Oshiro, L. S., 1973, Coronaviruses, in: Ultrastructure of Animal Viruses and Bacteriophages: An Atlas (A. J. Dalton and F. Haguenau, eds.), p. 331, Academic Press, New York.Google Scholar
  74. Parker, M. D., Cox, G. J., Deregt, D., Fitzpatrick, D. R., and Babiuk, L. A., 1989, Cloning and in vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus, J. Gen. Virol. 70:155.PubMedCrossRefGoogle Scholar
  75. Parker, M. D., Yoo, D., and Babiuk, L. A., 1990, Expression and secretion of the bovine coronavirus hemagglutinin-esterase glycoprotein by insect cells infected with recombinant baculoviruses, J. Virol. 64:1625.PubMedGoogle Scholar
  76. Percy, D., Bond, S., and MacInnes, J., 1989, Replication of sialodacryoadenitis virus in mouse L-2 cells, Arch. Virol. 104:323.PubMedCrossRefGoogle Scholar
  77. Rasschaert, D., Delmas, B., Charley, B., Grosclaude, J., Gelfi, J., and Laude, H., 1987, Surface glycoproteins of transmissible gastroenteritis virus: Functions and gene sequence, Adv. Exp. Med. Biol. 218:109.PubMedCrossRefGoogle Scholar
  78. Reynolds, D. J., and Garwes, D. J., 1979, Virus isolation and serum antibody responses after infection of cats with transmissible gastroenteritis virus, Arch. Virol. 60:161.PubMedCrossRefGoogle Scholar
  79. Schultze, B., and Herrler, G., 1992, Bovine coronavirus uses N-aeetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells, J. Gen. Virol. 73:901.PubMedCrossRefGoogle Scholar
  80. Schultze, B., Gross, H. J., Brossmer, R., Klenk, H. D., and Herrler, G., 1990, Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes: Comparison with bovine coronavirus and influenza C virus, Virus Res. 16:185.PubMedCrossRefGoogle Scholar
  81. Schultze, B., Gross, H. J., Brossmer, R., and Herrler, G., 1991a, The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant, J. Virol. 65:6232.PubMedGoogle Scholar
  82. Schultze, B., Wahn, K., Klenk, H. D., and Herrler, G., 1991b, Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity, Virology 180:221.PubMedCrossRefGoogle Scholar
  83. Sippel, C. J., Suchy, F. J., Ananthanarayanan, M., and Perlmutter, D. H., 1993, The rat liver ecto-ATPase is also a canalicular bile acid transport protein, J. Biol. Chem. 268:2083.PubMedGoogle Scholar
  84. Spaan, W., Cavanagh, D., and Horzinek, M. C., 1988, Coronaviruses: Structure and genome expression, J. Gen. Virol. 69:2939.PubMedCrossRefGoogle Scholar
  85. Stoddart, C. A., Barlough, J. E., Baldwin, C. A., and Scott, F. W., 1988, Attempted immunisation of cats against feline infectious peritonitis using canine coronavirus, Res. Vet. Sci. 45:383.PubMedGoogle Scholar
  86. Stohlman, S. A., and Frelinger, J. A., 1978, Resistance to fatal central nervous system disease by mouse hepatitis virus strain JHM. I. Genetic analysis, Immunogenetics 6:277.CrossRefGoogle Scholar
  87. Stohlman, S. A., Frelinger, J. A., and Weiner, L. P., 1980, Resistance to fatal central nervous system disease by mouse hepatitis virus, strain JHM. II. Adherent cell-mediated protection, J. Immunol. 124:1733.PubMedGoogle Scholar
  88. Storz, J., and Rott, R., 1981, Reactivity of antibodies in human serum with antigens of an entero-pathogenic bovine coronavirus, Med. Microbiol. Immunol. 169:169.PubMedCrossRefGoogle Scholar
  89. Storz, J., Rott, R., and Kaluza, G., 1981, Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment, Infect. Immun. 31:1214.PubMedGoogle Scholar
  90. Storz, J., Herrler, G., Snodgrass, D. R., Hussain, K. A., Zhang, X. M., Clark, M. A., and Rott, R., 1991, Monoclonal antibodies differentiate between the haemagglutinating and the receptor-destroying activities of bovine coronavirus, J. Gen. Virol. 72:2817.PubMedCrossRefGoogle Scholar
  91. Sturman, L., and Holmes, K. V., 1985, The novel glycoproteins of coronaviruses, Trends Biochem. Sci. 10:17.CrossRefGoogle Scholar
  92. Sturman, L. S., Ricard, C. S., and Holmes, K. V., 1990, Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion, J. Virol. 64:3042.PubMedGoogle Scholar
  93. Tooze, J., and Tooze, S. A., 1985, Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: Virus budding is restricted to the Golgi region, Eur. J. Cell Biol. 37:203.PubMedGoogle Scholar
  94. Turbide, C., Rojas, M., Stanners, C. P., and Beauchemin, N., 1991, A mouse carcinoembryonic antigen gene family member is a calcium-dependent cell adhesion molecule, J. Biol. Chem. 266:309.PubMedGoogle Scholar
  95. Varki, A., 1992, Diversity in the sialic acids, Glycobiology 2:25.PubMedCrossRefGoogle Scholar
  96. Varki, A., 1993, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology 3:97.PubMedCrossRefGoogle Scholar
  97. Vautherot, J. F., Madelaine, M. F., Boireau, P., and Laporte, J., 1992, Bovine coronavirus peplomer glycoproteins: Detailed antigenic analyses of S1, S2 and HE, J. Gen. Virol. 73:1725.PubMedCrossRefGoogle Scholar
  98. Virelizier, J. L., Dayan, A. D., and Allison, A. C., 1975, Neuropathological effects of persistent infection of mice by mouse hepatitis virus, Infect. Immun. 12:1127.PubMedGoogle Scholar
  99. Vlasak, R., Luytjes, W., Leider, J., Spaan, W., and Palese, P., 1988a, The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity, J. Virol. 62:4686.PubMedGoogle Scholar
  100. Vlasak, R., Luytjes, W., Spaan, W., and Palese, P., 1988b, Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses, Proc. Natl. Acad. Sci. USA 85:4526.PubMedCrossRefGoogle Scholar
  101. Wang, F. I., Fleming, J. O., and Lai, M. M., 1992, Sequence analysis of the spike protein gene of murine coronavirus variants: Study of genetic sites affecting neuropathogenicity, Virology 186:742.PubMedCrossRefGoogle Scholar
  102. Wege, H., Siddell, S., and ter Meulen, V., 1982, The biology and pathogenesis of coronaviruses, Curr.Top. Microbiol. Immunol. 99:165.CrossRefGoogle Scholar
  103. Welter, C.J., 1965, TGE of swine I. Propagation of a virus in cell culture and development of a vaccine, Vet. Me./Small Anim. Clin. 60:1054.Google Scholar
  104. White, J. M., 1990, Viral and cellular membrane fusion proteins, Annu. Rev. Physiol. 52:675.PubMedCrossRefGoogle Scholar
  105. White, J. M., and Littman, D. R., 1989, Viral receptors of the immunoglobulin superfamily, Cell 56:725.PubMedCrossRefGoogle Scholar
  106. Williams, R. K., Jiang, G.-S., Snyder, S. W., Frana, M. P., and Holmes, K. V., 1990, Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a nonfunctional, homologous protein in MHV-resistant SJL/J mice, J. Virol. 64:3817.PubMedGoogle Scholar
  107. Williams, R. K., Jiang, G. S., and Holmes, K. V., 1991, Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins, Proc. Natl. Acad. Sci. USA 88:5533.PubMedCrossRefGoogle Scholar
  108. Woods, R. D., 1982, Studies on enteric coronaviruses in a feline cell line, Vet. Microbiol. 7:427.PubMedCrossRefGoogle Scholar
  109. Woods, R. D., and Pedersen, N.C., 1979, Cross-protection studies between feline infectious peritonitis and transmissible gastroenteritis viruses, Vet. Microbiol. 4:11.CrossRefGoogle Scholar
  110. Woods, R. D., and Wesley, R. D., 1986, Immune response in sows given transmissible gastroenteritis virus or canine coronavirus, Am. f. Vet. Res. 47:1239.Google Scholar
  111. Woods, R. D., Cheville, N. F., and Gallagher, J. E., 1981, Lesions in the small intestine of newborn pigs inoculated with porcine, feline, and canine coronaviruses, Am. J. Vet. Res. 42:1163.PubMedGoogle Scholar
  112. Yeager, C. L., Ashmun, R. A., Williams, R. K., Cardellichio, C. B., Shapiro, L. H., Look, A. T., and Holmes, K. V., 1992, Human aminopeptidase N is a receptor for human coronavirus 229E, Nature 357:420.PubMedCrossRefGoogle Scholar
  113. Yokomori, K., and Lai, M. M., 1992a, The receptor for mouse hepatitis virus in the resistant mouse strain SJL is functional: Implications for the requirement of a second factor for viral infection, J. Virol. 66:6931.PubMedGoogle Scholar
  114. Yokomori, K., and Lai, M. M. C., 1992b, Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors, J. Virol. 66:6194.PubMedGoogle Scholar
  115. Yokomori, K., Banner, L. R., and Lai, M. M., 1991, Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses, Virology 183:647.PubMedCrossRefGoogle Scholar
  116. Yoo, D., Graham, F. L., Prevec, L., Parker, M. D., Benko, M., Zamb, T., and Babiuk, L. A., 1992, Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus, J. Gen. Virol. 73:2591.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kathryn V. Holmes
    • 1
  • Susan R. Compton
    • 2
  1. 1.Department of PathologyUniformed Services University of the Health SciencesBethesdaUSA
  2. 2.Section of Comparative MedicineYale UniversityNew HavenConnecticutUSA

Personalised recommendations