Experiments on bidimensional models of sand: study of the dynamics

  • Jean Rajchenbach
  • Eric Clément
  • Jacques Duran
  • Touria Mazozi
Part of the NATO ASI Series book series (NSSB, volume 344)

Abstract

Granular materials consisting of assemblies of dry and macroscopic particles of size typically larger than 100 μm, are of widespread use in many industrial applications. In civil engineering, chemical or food industries, numerous processes are designed to transport, store or mix together solid powders. Interestingly, this class of material displays original physical properties and remains a challenge to fundamental understanding. Among those properties, one can cite, as a response to stress, the occurrence of strain localisation and vault effects, also the existence of intermittent flows (avalanches) and a non-Newtonian rheology, furthermore, as a response to shearing and shaking, one observes violent size segregation phenomena. All this phenomenology is original and has no equivalent in the physics of the solid and the liquid state. Contrasting with atomic systems, for which equilibrium statistical mechanics and linear response theory provide a basis for the passage from a microscopic to a macroscopic viewpoint, here the particles are so large, that fluctuations of thermal origin are irrelevant and all classical methods of statistical mechanics fail. Furthermore, a strong disorder is present due to the irregular shape of the grains and to the fact that the contact forces between the grains are non-linear and dissipative. It is clear that such a complexity prevents from following standard routes in order to derive macroscopic behaviours. There were some attempts to provide a theoretical description adapted from solid state mechanics or from hydrodynamics, but until now, they seem to be inappropriate to describe in a unified way the observed behaviours. In this paper, we present series of experiments where the complexity of the “sand pile” problem is reduced by using simple granular model systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown R.L. and Richards J.C., “Principles of Powder Mechanics”, Pergamon, Oxford, (1966).Google Scholar
  2. 2.
    Duran J., Rajchenbach J. and Clément E., Arching effect model for particle size segregation, Phys.Rev.Lett. 70, 2431, (1993).ADSCrossRefGoogle Scholar
  3. 3.
    Evesque P. and Rajchenbach J., Instability in a sand heap, Phys.Rev.Lett., 62, 44, (1989).ADSCrossRefGoogle Scholar
  4. 4.
    Clément E., Duran J., Rajchenbach J., Experimental study of a bidimensional sand pile, Phys. Rev. Lett. 69, 1189 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    Bridgwater J., Fundamental powder mixing mechanisms, Powder Tech, 15, 215, 1976.CrossRefGoogle Scholar
  6. 6.
    Clément E., Rajchenbach J., Fluidization of a bidimensional powder, Europhys. Lett. 16, 133, (1991).ADSCrossRefGoogle Scholar
  7. 7.
    Evesque P., Szmatula E., Denis J.P., Surface fluidization of a sand pile, Europh. Lett. 12, 623, (1990).ADSCrossRefGoogle Scholar
  8. 8.
    Evesque P. and Rajchenbach J, Caracterisation d’avalanches de billes dans un cylindre tournant, Comptes Rendus Acad. Sci. (Paris), série II, 307, 223 (1988).Google Scholar
  9. 9.
    Jaeger H.M., Liu C.H. and Nagel S.R., Relaxation at the angle of repose, Phys Rev. Lett. 62, 40 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    Rajchenbach J., C lément E. and Duran J., Velocity measurements on bidimensionnal powder, in Powders and grains 93, p. 333, C. Thornton Ed., Balkema, Rotterdam (1993).Google Scholar
  11. 11.
    Khan Ahmad and Smalley I.J., Observation of particle segregation in vibrated granular systems, Powder Tech, 8, 69, (1973).CrossRefGoogle Scholar
  12. 12.
    Bernu B. and Mazighi R., One dimensional bounce of inelastic coliding marbles on a wall, J.Phys. A 23, 5745,(1990).ADSGoogle Scholar
  13. 13.
    Luding S., Clément E., Blumen A., Rajchenbach J. and Duran J., Studies of columns of beads under vibrations, Phys.Rev. E 49, 1634, (1994).ADSGoogle Scholar
  14. 14.
    Janssen H.A., Test on grain pressure in silos, Zeits. d. Verins Deutsch Ing. 39, 1045, (1895).Google Scholar
  15. 15.
    Duran J., Mazozi T., Clément E. and Rajchenbach J., Decompaction mode of a two-dimensional ”sandpile” under vibrations: model and experiments, Phys.Rev. E 50, (to appear in Oct. 1994).Google Scholar
  16. 16.
    Laroche C, S. Douady and S. Fauve, Convective flow of granular masses under vertical vibrations, Physique 50, 699, (1989).CrossRefGoogle Scholar
  17. 17.
    Savage S.B., Interparticle percolation and segregation in granular material: a review, in Developments in Engineering mechanics p. 347, A.P.S. Selvadurai Ed., Elsevier, Amsterdam, (1987).Google Scholar
  18. 18.
    Knight J.B., Jaeger H.M. and Nagel S., Vibration induced size segregation in granular media: the convection conection. Phys.Rev.Lett. 70, 3728, (1993).ADSCrossRefGoogle Scholar
  19. 19.
    Moreau J.J., New computation methods in granular dynamics in Powders and grains 93, p 227, C. Thornton Ed, A.A. Balkema, Rotterdam (1993).Google Scholar
  20. 20.
    Rosato A., Prinz F., Stanburg K.J. and Swendsen R.H., Why the Brazil nuts are on top; size segregation of particulate matter by shaking? Phys. Rev. Lett. 58, 1038, (1987).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Jullien R., Meakin P. and Pavlovitch A., Three dimensionnal model for particle size segregation by shaking, Phys. Rev. Lett. 69, 640, (1992).ADSCrossRefGoogle Scholar
  22. 22.
    Barker G.C. Melita A. and Grimson M.J., Comment on Three dimensionnal model for particle size segregation by shaking, Phys.Rev.Lett. 70, 2194, (1993).ADSCrossRefGoogle Scholar
  23. 23.
    Duran J., Mazozi T., Clement E. and Rajchenbach J., Size segregation in a 2d sandpile: convection and arching effect, preprint (1994).Google Scholar
  24. 24.
    Reynolds O., On the dilatancy of media composed of rigid particles in contact. Phil.Mag. Ser. 5, 20, 469, (1885).CrossRefGoogle Scholar
  25. 25.
    Bagnold R.A., Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear, Proc.Roy.Soc. A225, 49, (1954).ADSGoogle Scholar
  26. 26.
    Jenkins J.T. and Savage S.B, Theory for the rapid flow of identical smooth, nearly elastic, spherical particles, J.Fluid.Mech. 130, 187, (1983).ADSMATHCrossRefGoogle Scholar
  27. 27.
    Lun C.K.K., Savage S.B., Jeffrey D.J., and Chepurniy N., Kinetic theory for granular flows in Couette flow and slightly elastic particles in general flowfield, J.Fluid.Mech. 140, 223, (1984).ADSMATHCrossRefGoogle Scholar
  28. 28.
    Rajchenbach J., Flow in powders: from discrete avalanches to continuous flow regime, Phys.Rev.Lett. 65, 2221 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jean Rajchenbach
    • 1
  • Eric Clément
    • 1
  • Jacques Duran
    • 1
  • Touria Mazozi
    • 1
  1. 1.Acoustique et Optique de la Matière Condensée URA 800 CNRSUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations