Continuity of the Solution Set of Homogeneous Equilibrium Problems and Linear Complementarity Problems

  • Oettli Werner
  • Yen Nguyen Dong


Denote by S(M, q) the solution set of the linear complementarity problem
$$ z \geqslant 0,{\mkern 1mu} Mz + q \geqslant 0,{\mkern 1mu} \left\langle {z,Mz + q} \right\rangle {\mkern 1mu} = 0, $$
where M ∈ ℝn×n and q ∈ ℝ n . M is called an R 0-matrix iff S(M, 0) = {0}. Jansen and Tijs have proved that if M is an R 0-matrix, then the map S is upper semicontinuous at (M, q) for every q ∈ ℝ n . We prove that this property is characteristic for R 0-matrices. Part of our results extends to homogeneous equilibrium problems of the type
$$ z{\mkern 1mu} \in K,{\mkern 1mu} f(z,y){\mkern 1mu} + {\mkern 1mu} \left\langle {q,y - z} \right\rangle \geqslant 0,{\mkern 1mu} \forall y \in {\mkern 1mu} K. $$

Here K ⊂ ℝ n is a closed convex cone and f: K × K → ℝ is such that fx, λy) = λρ+1 f(x,y) ∀x,yK, ∀λ ≥ 0, where ρ > 0 is a fixed constant.

Key Words

Linear complementarity problem solution map upper semicontinuity nonlinear equilibrium problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems”, Math. Student 63, 123–145, 1994.MathSciNetzbMATHGoogle Scholar
  2. [2]
    H. Brézis, “Analyse fonctionnelle”, Masson, Paris, 1983.Google Scholar
  3. [3]
    R.W. Cottle, J.-S. Pang, and R.E. Stone, “The Linear Complementarity Problem”, Academic Press, New York, 1992.zbMATHGoogle Scholar
  4. [4]
    R.D. Doverspike, “Some perturbation results for the linear complementarity problem”, Math. Programming 23, 181–192, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    C.B. Garcia, “Some classes of matrices in linear complementarity theory”, Math. Programming 5, 299–310, 1973.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    M.S. Gowda, “On the continuity of the solution map in linear complementarity problems”, SIAM J. Optimization 2, 619–634, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M.S. Gowda, “Applications of degree theory to linear complementarity problems”, Math. Oper. Res. 18, 868–879, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    M.S. Gowda and J.-S. Pang, “On solution stability of the linear complementarity problem”, Math. Oper. Res. 17, 77–83, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C.D. Ha, “Stability of the linear complementarity problem at a solution point”, Math. Programming 31, 327–338, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    M.J.M. Jansen and S.H. Tijs, “Robustness and nondegenerateness for linear complementarity problems”, Math. Programming 37, 293–308, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    O.L. Mangasarian and T.-H. Shiau, “Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems”, SIAM J. Control Optim. 25, 583–595, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    K.G. Murty, “On the number of solutions to the complementarity problem and spanning properties of complementarity cones”, Linear Algebra Appl. 5, 65–108, 1972.zbMATHCrossRefGoogle Scholar
  13. [13]
    K.G. Murty, “Linear Complementarity, Linear and Nonlinear Programming”, Heldermann-Verlag, Berlin, 1987.Google Scholar
  14. [14]
    S.M. Robinson, “Generalized equations and their solutions, Part I: Basic Theory”, Math. Programming Study 10, 128–141, 1979.zbMATHCrossRefGoogle Scholar
  15. [15]
    S.M. Robinson, “Some continuity properties of polyhedral multifunctions”, Math. Programming Study 14, 206–214, 1981.zbMATHCrossRefGoogle Scholar
  16. [16]
    R.T. Rockafellar, “Convex Analysis”, Princeton University Press, Princeton, 1970.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Oettli Werner
    • 1
    • 2
  • Yen Nguyen Dong
    • 2
  1. 1.Fakultät für Mathematik und InformatikUniversität MannheimMannheimGermany
  2. 2.Hanoi Institute of MathematicsBo Ho, HanoiVietnam

Personalised recommendations