Advertisement

New Solutions of the Classical String Equation in de Sitter Space

  • Hector J. de Vega
  • Alexandre V. Mikhailov
  • Norma Sánchez
Part of the NATO ASI Series book series (NSSB, volume 329)

Abstract

Nonlinear relativistic string equation in de Sitter space can be reduced to the following system of PDE’s [1]
$$ \langle {q_\xi }J{q_\xi }\rangle = 0,{\text{ }}\langle {q_\eta }J{q_\eta }\rangle = 0 $$
(1)
where q〉 ∈ R N+1 is a real vector of unit pseudolength
$$ \left\langle {qJq} \right\rangle {\mkern 1mu} = {\mkern 1mu} 1,(J = diag( - 1,\underbrace {1,{\mkern 1mu} 1,{\mkern 1mu} \ldots {\mkern 1mu} ,{\mkern 1mu} 1}_N)), $$
(2)
with conformai string constraints
$$ \langle {q_\xi }J{q_\xi }\rangle = 0,{\text{ }}\langle {q_\eta }J{q_\eta }\rangle = 0 $$
(3)
and the periodicity condition
$$ q(\eta + 2\pi ,\xi - 2\pi )\rangle = q(\eta ,\xi )\rangle $$
(4)
.

Keywords

Fundamental Solution Soliton Solution Liouville Equation Background Solution String Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. de Vega and N. Sanchez, Phys.Lett. B197:320, (1987)ADSGoogle Scholar
  2. 2.
    H. J. de Vega and N. Sanchez, Preprint LPTHE-PAR 92-31 (1992)Google Scholar
  3. 3.
    V. E. Zakharov and A. V. Mikhailov, JETP 75:1953, (1978)MathSciNetGoogle Scholar
  4. 4.
    A. V. Mikhailov, Physica3D, N1&2, p73-117, (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Hector J. de Vega
    • 1
  • Alexandre V. Mikhailov
    • 2
  • Norma Sánchez
    • 3
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesParisFrance
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  3. 3.Observatoire de Paris, Section de MeudonDEMIRMFrance

Personalised recommendations