# Theory of Defects in the MOS System

## Abstract

Without doubt, the single most important technology for electronic device fabrication relies on the metal-oxide-silicon (MOS) system. In recent years III-V semiconductors have promised great increases in device speed and, because they are direct-gap materials, have been very important in electro-optical applications (i. e. light emitting diodes). However, these semiconductors have very complicated surfaces with high densities of surface-states and, hence, very low surface electron densities. While bare silicon surfaces also have low electron densities due to surface-states, most of these states can be eliminated by growing a thermal oxide. For other semiconductors, no such passivating process exists, so that, for instance, inversion devices such as enhancement-mode MOSFET’s (field effect transistors) are practical only in silicon. It is not surprising, then, that the MOS system has been studied intensely over the past thirty years. One of the most important areas of investigation has been the study of point defects. Defects in the oxide lead to shifts in threshold voltage in MOSFET’s [1]. Also, the residual unpassivated defects at the Si/SiO_{2} interface are responsible for decreased surface mobility, and for “soft” threshold characteristics. We should note that while some defects are inherent, i. e. arise from differences in the thermal expansion coefficients of silicon and silicon dioxide, and from lattice-network mismatch, most exist due to ionizing radiation or hot-electron injection. They can be created during fabrication (during X-ray lithography, or during the various plasma-assisted etching steps), or they can be a result of exposure to a space environment where even a modest flux of gamma rays can cause dramatic changes in device characteristics [2].

## Keywords

Silicon Atom Hyperfine Interaction Dangling Bond Unpaired Spin Hyperfine Tensor## Preview

Unable to display preview. Download preview PDF.

## References

- 1.For a thorough though somewhat dated review of charge trapping in the MOS system,
*see*E. H. Nicollian and J. R. Brews, MOS ( Metal Oxide Semiconductor) Physics and Technology, John Wiley and Sons (New York, 1982 ) Chapter 11.Google Scholar - 2.P. Winokur at The Natural Space Radiation and VLSI Technology Conference, Houston, Tx., 1986 (in press).Google Scholar
- 3.By intrinsic we mean those defects that involve only the elements silicon, oxygen and hydrogen. While an ideal MOS structure can be built of only oxygen and silicon, hydrogen is always present, and is so fundamentally important, that we include it in our study.Google Scholar
- 4.For reviews of intrinsic defects in a-Si0
_{2}, see D. L. Griscom in: The Physics of SiO and its interfaces, ed. S. T. Pantelides (Pergamon, New York, 1978) p 232;W. B. Fowler in: Structure and Bonding in Noncrystalline Solids, eds. G. E. Walrafen and A. G. Revesz (Plenum, New York, 1986) p157; A. H. Edwards in: Defects in Glasses, eds. F. L. Galeener, D. L. Griscom and M. J. Weber (MRS, Pittsburgh, 1986) p. 3.Google Scholar - 5.For extended discussions of the dangling silicon orbital defect at the 111 Si/Si0
_{2}interface see A. H. Edwards, Phys. Rev. B Pt. II 36; A. H. Edwards in The Physics and Technology of a-Si02 (in press).Google Scholar - 6.D. L. Griscom and D. B. Brown, this proceedings.Google Scholar
- 7.K. L. Brower, this proceedings.Google Scholar
- 8.A. H. Edwards and W. B. Fowler in: Structure and Bonding in Noncrystalline Solids, eds. G. E. Walrafen and A. G. Revesz (Plenum, 1986) p. 139; A. H. Edwards and G. Germann, Nucl. Inst. and Meth. in Phys. Res. (in press).Google Scholar
- 9.D. L Griscom, Phys. Rev. B 22, 4192 (1980).Google Scholar
- 10.J. Isoya, J. Weil, and L.Halliburton, J. Chem. Phys. 74, 5436 (1981).Google Scholar
- 11.J. K. Rudra, W. B. Fowler, and F. J. Feigl, Phys. Rev. Lett. 55 (1985) 2614.Google Scholar
- 12.M. G. Jani, R. B. Bossoli, and L. E. Halliburton, Phys. Rev. B 27 (1983) 2285.Google Scholar
- 13.R. H. Silsbee, J. Appl Phys. 32 (1961) 1459.Google Scholar
- 14.It is interesting to compare these results with the hyperfine data for the E
_{4}’ center (ref. 10). At low temperatures, the spin is localized predominantly on the long-bond side of the vacancy in contradistinction to the E_{1}’ center. In this case Isoya*et*aI. observed three weak hyperfine interactions. At higher temperatures, when the spin is delocalized onto both silicon atoms neighboring the vacancy, they observe five weak hyperfine interactions. Again, Si3 in Fig. 2 is oriented so that there is strong cancellation of the defect wave-function at its nucleus.Google Scholar - 15.J. K. Rudra and W. B. Fowler, Phvs. Rev, B15 Dt. II 35, 8223 (1987).Google Scholar
- 16.F. J. Feigl, W. B. Fowler, and K. L. Yip, Sol. State Commun. 14, 225 (1974).CrossRefGoogle Scholar
- 17.K. L. Yip and W. B. Fowler, Phys. Rev. B 11 (1975) 2327.Google Scholar
- 18.A. H. Edwards and W. B. Fowler, J. Phys. Chem. Solids 46, 841 (1985).CrossRefGoogle Scholar
- 19.The dependence on initial Si-Si separation is easy to explain using eq. (1). As this distance increases, the excitation energy decreases, while the force and coupling constants remain roughly unchanged.Google Scholar
- 20.F. Schirmer in The Physics of MOS Insulators, eds. G. Lucovsky, S. T. Pantelides and F. L. Galeener ( Pergamon, New York, 1980 ) p. 102.Google Scholar
- 21.Y. Bar-Yam and S. T. Pantelides (unpublished).Google Scholar
- 22.D. C. Allan and M. P. Teter, Still. Am. Phys. Soc. 33, 438 (1988).Google Scholar
- 23.D. L. Griscom, Phys. Rev B 22, 4192 (1980).CrossRefGoogle Scholar
- 24.D. L. Griscom, E. J. Friebele, and G. H. Sigel Jr., Solid State Comm. 15, 479 (1974).CrossRefGoogle Scholar
- 25.J. Vitko, J. Appl. Phys. 49 5530 (1978).CrossRefGoogle Scholar
- 26.T-E Tsai and D. L. Griscom J. Non-Cryst. Solids 91, 170 (1987).CrossRefGoogle Scholar
- 27.M. Stapelbroek, D. L. Griscom, E. J. Friebele, and G. H. Sigel, Jr., J. Non-Cryst. Solids. 32, 313 (1979).CrossRefGoogle Scholar
- 28.E. J. Friebele, D. L. Griscom, M. Stapelbroek, and R. A. Weeks, Phys. Rev. Lett. 42, 1346 (1979).CrossRefGoogle Scholar
- 29.D. L. Griscom and E. J. Friebele, Phys. Rev. B24, 4896 (1981).CrossRefGoogle Scholar
- 30.E. H. Poindexter and P. J. Caplan, J. Appl. Phys. (in press).Google Scholar
- 31.W. Carlos, Appl. Phys. Lett. 49, 1767 (1986).Google Scholar
- 32.B. B. Triplett, T. Takahashi, and T. Sugano, Appl. Phys. Lett 50 1663 (1987).CrossRefGoogle Scholar
- 33.H. S. Witham and P. M. Lenahan, Appl. Phys. Lett. 51, 1007 (1987).CrossRefGoogle Scholar
- 34.E. H. Poindexter, E. R.Ahlstrom, and P. J. Caplan in The Physics of Si02 and its Interfaces, ed. S. T. Pantelides ( Pergamon, N. Y., 1978 ), p. 227.Google Scholar
- 35.K. L. Brower, Appl. Phys. Lett. 43, 1111 (1983).Google Scholar
- 36.E. H. Poindexter, G. J. Gerardi, M.-E. Rueckel, P. J. Caplan, N. M. Johnson, and D. K. Biegelsen, J. Appl. Phvs. 56, 2844 (1984).CrossRefGoogle Scholar
- 37.Lenahan and Dressendorfer, J. Appl. Phys. 55, 3495 (1984).Google Scholar
- 38.M. Cook and C. T. White, Phys. Rev Lett. 59, 1741 (1987).CrossRefGoogle Scholar
- 39.A. H. Edwards, Phys. Rev. B15 pt. II 36, 9638 (1987).Google Scholar
- 40.A. Redondo, W. Goddard, and T. McGill, J. Vac. Sci. Technol. 21, 649 (1982).CrossRefGoogle Scholar
- 41.A. Redondo, W. Goddard, T. McGill, and T. Surratt, Solid State Comm. 20, 733 (1976).CrossRefGoogle Scholar
- 42.Y. Bar-Yam and J. Joannopoulos, Phys. Rev. Lett. 56, 2203 (1986).CrossRefGoogle Scholar
- 43.E. H. Poindexter, P. J. Caplan, B. E. Deal, and R. R. Razouk, J. Appl. Phys 52, 879 (1981).CrossRefGoogle Scholar
- 44.G. J. Gerardi, E. H. Poindexter, P. H. Caplan, and N. M. Johnson, Appl. Phys. Lett. 49, 348 (1986).CrossRefGoogle Scholar
- 45.K. L. Brower, Z. fur Physik. Chem. 151 S, 177 (1987).Google Scholar
- 46.J. S. Binkley, M. Frisch, K. Raghavachari, D. DeFrees, H. B. Schegel, R. Whitside, E. Fluder, R. Seeger, D. J. Fox, M. Head-Gordon, and S. Topiol, GAUSSIAN-82 Release C, Carnegie Mellon University.Google Scholar
- 47.P. J. Bishof, J. Am. Chem. Soc. 98 (1976) 6844.CrossRefGoogle Scholar
- 48.R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97, 1285 (1975).CrossRefGoogle Scholar
- 49.As in ref. 39, the HOMO can be defined as the defect state because most (in this case 0.51 e)of the wave-function amplitude is on the defect atom.Google Scholar
- 50.A. Carrico, R. Elliott, and R. Barrio, Phys. Rev. B 34, 872 (1986).CrossRefGoogle Scholar
- 51.S. T. Pantelides and M. Long in The Physics of Si02 and its Interfaces, ed. S. T. Pantelides ( Pergamon, New York, 1978 ) p. 339.Google Scholar
- 52.C. T. White (private communication).Google Scholar
- 53.D. K. Biegelsen and M. Stutzmann, Phys. Rev. B15 33, 3006 1986.Google Scholar
- 54.