Derivation of a Generalized Gradient Approximation: The PW91 Density Functional

  • Kieron Burke
  • John P. Perdew
  • Yue Wang

Abstract

Real-space analysis decomposes the exchange-correlation energy of a many-electron system into contributions from all possible interelectronic separations u. The density-gradient expansion of the exchange-correlation hole surrounding an electron has a characteristic structure. Its zeroth-order term, the local spin density (LSD) approximation, is a good approximation to both the hole and its cusp at u = 0. When the electron density varies slowly over space, addition of each successive term of higher order in ∇ improves the description of the hole at small u, but worsens it at large u. Starting with the second-order gradient expansion, we cut off the spurious large-u contributions in a way that restores the negativity and normalization constraints on the exchange hole, and the normalization constraint on the correlation hole. This procedure defines numerical generalized gradient approximations (GGA’s) for the exchange and correlation energies, using no empirical input. We report the results of this construction in detail. This numerical GGA satisfies the most important exact conditions respected by LSD, plus several more (but not all) exact conditions currently known. The PW91 functional is an analytic fit to this functional, designed to respect several further exact conditions including the Lieb-Oxford bound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).Google Scholar
  4. 4.
    R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990).MATHCrossRefGoogle Scholar
  5. 5.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    W. E. Pickett and J. Q. Broughton, Phys. Rev. B 48, 14859 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    M. Rasolt and H.L. Davis, Phys. Lett. A 86, 45 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    M. Rasolt and D.J.W. Geldart, Phys. Rev. B 34, 1325 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    L. J. Sham, in Computational Methods in Band Theory, edited by P. M. Marcus, J. F. Janak, and A. R. Williams (Plenum, New York, 1971), p. 458.CrossRefGoogle Scholar
  14. 14.
    S.-K. Ma and K.A. Brueckner, Phys. Rev. 165, 18 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    L. Kleinman and S. Lee, Phys. Rev. B 37, 4634 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).; 40, 3399 (1989) (E).ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986).; 34, 7406 (1986) (E).ADSCrossRefGoogle Scholar
  18. 18.
    D.C. Langreth and J.P. Perdew, Phys. Rev. B 21, 5469 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, Phys. Rev. Lett. 55, 1665 (1985); 55, 2370 (1985) (E).ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Langreth and M.J. Mehl, Phys. Rev. B 28, 1809 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    C.D. Hu and D.C. Langreth, Phys. Scr. 32, 391 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    K. Burke, J. P. Perdew, and M. Levy, in Modern Density Functional Theory: A Tool for Chemistry, edited by J. M. Seminario and P. Politzer (Elsevier, Amsterdam, 1995).Google Scholar
  23. 23.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).; 48, 4978 (1993) (E).ADSCrossRefGoogle Scholar
  24. 24.
    N. A. W. Holzwarth and Y. Zeng, Phys. Rev. B 49, 2351 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    L. Stixrude, R. E. Cohen, and D. J. Singh, Phys. Rev. B 50, 6442 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50, 7279 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    P. Söderlind, O. Eriksson, J.M. Willis, and B. Johannson, Phys. Rev. B 50, 7291 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    G. Kresse, J. Furthmüller, and J. Hafner, Phys. Rev. B 50, 13181 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    M. Causá and A. Zupan, Chem. Phys. Letters 220, 145 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    A. Khein, D.J. Singh, and C.J. Umrigar, Phys. Rev. B 51, 4105 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    D. Porezag and M.R. Pederson, J. Chem. Phys. 102, 9345 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    J.C. Grossman, L. Mitas, and K. Raghavachari, Phys. Rev. Lett. 75, 3870 (1995); 76, 1006 (1996) (E).ADSCrossRefGoogle Scholar
  33. 33.
    L. Stixrude and R.E. Cohen, Science, 267, 1972 (1995).ADSCrossRefGoogle Scholar
  34. 34.
    B. Hammer and J.K. Nørskov, Nature 376, 238 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    A. Gross, B. Hammer, M. Scheffler, and W. Brenig, Phys. Rev. Lett. 73, 3121 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    N. Moll, M. Bockstedte, M. Fuchs, E. Pehlke, and M. Scheffler, Phys. Rev. B 52, 2550 (1995).ADSCrossRefGoogle Scholar
  37. 37.
    D.R. Hamann, Phys. Rev. Lett. 76, 660 (1996).ADSCrossRefGoogle Scholar
  38. 38.
    J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Jr., Phys. Rev. Lett. 49, 1691 (1982).ADSCrossRefGoogle Scholar
  39. 39.
    J. P. Perdew, in Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia (Plenum, NY, 1985), p. 265.CrossRefGoogle Scholar
  40. 40.
    K. Burke, M. Ernzerhof, and J.P. Perdew, Why semi-local functionals work: Accuracy of the on-top hole density, work in progress.Google Scholar
  41. 41.
    C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, edited by D. A. Browne et al (World Scientific, Singapore, 1993).Google Scholar
  42. 42.
    C. Filippi, C. J. Umrigar, and M. Taut, J. Chem. Phys. 100, 1290 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).ADSCrossRefGoogle Scholar
  44. 44.
    M. Slamet and V. Sahni, Phys. Rev. B 44, 10921 (1991).ADSCrossRefGoogle Scholar
  45. 45.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).ADSCrossRefGoogle Scholar
  46. 46.
    J.P. Perdew, in Electronic Structure of Solids’ 91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), page 11.Google Scholar
  47. 47.
    E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).CrossRefGoogle Scholar
  48. 48.
    M. Levy, Int. J. Quantum Chem. S23, 617 (1989).Google Scholar
  49. 49.
    M. Levy, Phys. Rev. A 43, 4637 (1991).ADSCrossRefGoogle Scholar
  50. 50.
    A. Görling and M. Levy, Phys. Rev. A 45, 1509 (1992).ADSCrossRefGoogle Scholar
  51. 51.
    J.P. Perdew and K. Burke, Int. J. Quantum Chem. 57, 309 (1996).CrossRefGoogle Scholar
  52. 52.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).ADSCrossRefGoogle Scholar
  53. 53.
    J. P. Perdew and Y. Wang, Phys. Rev. B 46, 12947 (1992).: 56, 7018 (1997) (E).ADSCrossRefGoogle Scholar
  54. 54.
    K. Burke and J. P. Perdew, Int. J. Quantum Chem. 56, 199 (1995).CrossRefGoogle Scholar
  55. 55.
    E. Engel and S.H. Vosko, Phys. Rev. B 47, 13164 (1993). See Fig. 2.ADSCrossRefGoogle Scholar
  56. 56.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); 78, 1396 (1997) (E).ADSCrossRefGoogle Scholar
  57. 57.
    J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).ADSCrossRefGoogle Scholar
  58. 58.
    K. Burke, J.P. Perdew, and M. Ernzerhof, System-averaged exchange-correlation holes, work in progress.Google Scholar
  59. 59.
    D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975).ADSCrossRefGoogle Scholar
  60. 60.
    D.C. Langreth and J.P. Perdew, Phys. Rev. B 15, 2884 (1977).ADSCrossRefGoogle Scholar
  61. 61.
    O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
  62. 62.
    D.M. Ceperley and B.J. Alder, Phys. Rev. B 36, 2092 (1987).ADSCrossRefGoogle Scholar
  63. 63.
    K. Burke, J. P. Perdew, and D. C. Langreth, Phys. Rev. Lett. 73, 1283 (1994).ADSCrossRefGoogle Scholar
  64. 64.
    J.P. Perdew, A. Savin, and K. Burke, Phys. Rev. A 51, 4531 (1995).ADSCrossRefGoogle Scholar
  65. 65.
    K. Burke and J.P. Perdew, Mod. Phys. Lett. B 9, 829 (1995).ADSCrossRefGoogle Scholar
  66. 66.
    E.K.U. Gross and R.M. Dreizler, Z. Phys. A 302, 103 (1981).ADSCrossRefGoogle Scholar
  67. 67.
    Y. Wang, J. P. Perdew, J. A. Chevary, L. D. MacDonald, and S. H. Vosko, Phys. Rev. A 41, 78 (1990).ADSCrossRefGoogle Scholar
  68. 68.
    J.P. Perdew, Phys. Lett. A 165, 79 (1992).ADSCrossRefGoogle Scholar
  69. 69.
    G.L. Oliver and J.P. Perdew, Phys. Rev. A 20, 397 (1979).ADSCrossRefGoogle Scholar
  70. 70.
    J. P. Perdew, in Condensed Matter Theories, Vol. 2, edited by P. Vashishta, R. K. Kalia, and R. F. Bishop (Plenum, NY, 1987), p. 89.CrossRefGoogle Scholar
  71. 71.
    M. Ernzerhof, J.P. Perdew, and K. Burke, in Density Functional Theory, edited by R. Nalewajski (Spinger-Verlag, Berlin, 1996).Google Scholar
  72. 72.
    D.C. Langreth and J.P. Perdew, Phys. Lett. A 92, 451 (1982).ADSCrossRefGoogle Scholar
  73. 73.
    M. Ernzerhof, K. Burke, and J.P. Perdew, J. Chem. Phys. 105, 2798 (1996).ADSCrossRefGoogle Scholar
  74. 74.
    Y. Wang and J. P. Perdew, Phys. Rev. B 43, 8911 (1991).ADSCrossRefGoogle Scholar
  75. 75.
    J.P. Perdew, Physica B 172, 1 (1991).ADSCrossRefGoogle Scholar
  76. 76.
    Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).ADSCrossRefGoogle Scholar
  77. 77.
    M. Levy and J. P. Perdew, Phys. Rev. B 48, 11638 (1993).ADSCrossRefGoogle Scholar
  78. 78.
    J. C. Kimball, Phys. Rev. A 7, 1648 (1973).ADSCrossRefGoogle Scholar
  79. 79.
    E. R. Davidson, Reduced Density Matrices in Quantum Chemistry (Academic Press, New York, 1976).Google Scholar
  80. 80.
    J.P. Perdew, M. Ernzerhof, K. Burke, and A. Savin, Int. J. Quantum Chem. 61, 197 (1997).CrossRefGoogle Scholar
  81. 81.
    M. Levy and J.P. Perdew, Phys. Rev. A 32, 2010 (1985).ADSCrossRefGoogle Scholar
  82. 82.
    A. Zupan, J.P. Perdew, K. Burke, and M. Causá, Int. J. Quantum Chem. 61, 835 (1997).CrossRefGoogle Scholar
  83. 83.
    E. Engel, J.A. Chevary, L.D. MacDonald, and S.H. Vosko, Z. Phys. D 23, 7 (1992).ADSCrossRefGoogle Scholar
  84. 84.
    D.J. Lacks and R.G. Gordon, Phys. Rev. A 47, 4681 (1993).ADSCrossRefGoogle Scholar
  85. 85.
    L. A. Eriksson, O. L. Malkina, V. G. Malkin, and D. R. Salahub, J. Chem. Phys. 100, 5066 (1994).ADSCrossRefGoogle Scholar
  86. 86.
    E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).ADSCrossRefGoogle Scholar
  87. 87.
    D. C. Langreth and S. H. Vosko, Adv. in Quantum Chem. 21, 175 (1990).ADSCrossRefGoogle Scholar
  88. 88.
    D.J.W. Geldart, E. Dunlap, M.L. Glasser, and M.R.A. Shegelski, Solid State Commun. 88, 81 (1993).ADSCrossRefGoogle Scholar
  89. 89.
    S.J. Chakravorty, S.R. Gwaltney, E.R. Davidson, F.A. Parpia, and C. Froese Fischer, Phys. Rev. A 47, 3649 (1993).ADSCrossRefGoogle Scholar
  90. 90.
    A. Görling, M. Levy, and J. P. Perdew, Phys. Rev. B 47, 1167 (1993).ADSCrossRefGoogle Scholar
  91. 91.
    J.P. Perdew, Int. J. Quantum Chem. S 27, 93 (1993).CrossRefGoogle Scholar
  92. 92.
    Y. Li and J.B. Krieger, Phys. Rev. A 41, 1701 (1990).ADSCrossRefGoogle Scholar
  93. 93.
    K. Burke, J.P. Perdew, and M. Ernzerhof, Int. J. Quantum Chem. 61, 287 (1997).CrossRefGoogle Scholar
  94. 94.
    P. Söderlind, doctoral dissertation, Uppsala University (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Kieron Burke
    • 1
  • John P. Perdew
    • 1
  • Yue Wang
    • 1
  1. 1.Department of Physics and Quantum Theory GroupTulane UniversityNew OrleansUSA

Personalised recommendations