Mixing Exact Exchange with GGA: When to Say When

  • Kieron Burke
  • John P. Perdew
  • Matthias Ernzerhof

Abstract

The local spin density (LSD) approximation [1] has long been the method of choice for solid-state physics calculations. With the advent of generalized gradient approximations (GGAs) [2–7], density functional calculations for bond energies became an inexpensive alternative to traditional ab-initio quantum chemical calculations [8]. The recently derived PBE approximation [9] reduces the mean absolute error on a set of 20 small molecules from 31 kcal/mol in LSD to 8 kcal/mol. Both LSD and PBE approximations are non-empirical, in that all their parameters (other than the exchange-correlation energy per electron of a uniform gas) are fundamental constants. PBE is a simplification of the PW91 GGA [5–7].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J.P. Perdew, Phys. Rev. Lett. 55, 1665 (1985); 55, 2370 (1985) (E).ADSCrossRefGoogle Scholar
  3. 3.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    J.P. Perdew, in Electronic Structure of Solids’ 91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), page 11.Google Scholar
  6. 6.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).; 48, 4978 (1993) (E).ADSCrossRefGoogle Scholar
  7. 7.
    K. Burke, J.P. Perdew, and Y. Wang, Derivation of a, generalized gradient approximation: The PW91 density functional, chapter in the present volume.Google Scholar
  8. 8.
    Modern Density Functional Theory: A Tool for Chemistry, edited by J. M. Seminario and P. Politzer (Elsevier, Amsterdam, 1995).Google Scholar
  9. 9.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); ibid. 78, 1396 (1997)(E).ADSCrossRefGoogle Scholar
  10. 10.
    A. Zupan, K. Burke, M. Ernzerhof, and J. P. Perdew, J. Chem. Phys. 106, 10184 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    A. Becke, J. Chem. Phys. 104, 1040 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    L.A. Curtiss, K. Raghavachari, P.C. Redfern, and J.A. Pople, J. Chem. Phys. 106, 1063 (1997), and references therein.ADSCrossRefGoogle Scholar
  14. 14.
    M. Ernzerhof, J.P. Perdew, and K. Burke, Int. J. Quantum Chem. 64, 285 (1997).CrossRefGoogle Scholar
  15. 15.
    K. Burke, M. Ernzerhof, and J.P. Perdew, Chem. Phys. Lett. 265, 115 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    M. Ernzerhof, Chem. Phys. Lett. 263, 499 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    J. Harris, Phys. Rev. A 29, 1648 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    M. Taut, J. Phys. A 27, 1045 (1994).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    M. Levy, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. Seminario (Elsevier, Amsterdam, 1996).Google Scholar
  24. 24.
    C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, edited by D. A. Browne et al (World Scientific, Singapore, 1993).Google Scholar
  25. 25.
    M. Levy and J.P. Perdew, Phys. Rev. A 32, 2010 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    M. Levy, N.H. March, and N.C. Handy, J. Chem. Phys. 104, 1989 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    K. Burke, chapter in the present volume.Google Scholar
  28. 28.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    M. Levy and J.A. Goldstein, Phys. Rev. B 35, 7887 (1987).ADSCrossRefGoogle Scholar
  30. 30.
    K. Burke, J.P. Perdew, and M. Levy, Phys. Rev. A 53, R2915 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    O. Gritsenko, R. van Leeuwen, and E.J. Baerends, Int. J. Quantum Chem. S30, 163 (1997).Google Scholar
  32. 32.
    E. H. Lieb and S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).CrossRefGoogle Scholar
  33. 33.
    M. Levy and J. P. Perdew, Phys. Rev. B 48, 11638 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    M. Ernzerhof, unpublished results.Google Scholar
  35. 35.
    A. Görling and M. Levy, Phys. Rev. B 47, 13105 (1993).ADSCrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, M. Ernzerhof, K. Burke, and A. Savin, Int. J. Quantum Chem. 61, 197 (1997).CrossRefGoogle Scholar
  37. 37.
    M. Ernzerhof, K. Burke, and J. P. Perdew, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. Seminario (Elsevier, Amsterdam, 1996).Google Scholar
  38. 38.
    K. Burke, J.P. Perdew, and M. Ernzerhof, Int. J. Quantum Chem. 61, 287 (1997).CrossRefGoogle Scholar
  39. 39.
    K. Burke, F. Cruz, and K.C. Lam, work in progress.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Kieron Burke
    • 1
  • John P. Perdew
    • 2
  • Matthias Ernzerhof
    • 2
  1. 1.Department of ChemistryRutgers University-CamdenCamdenUSA
  2. 2.Department of Physics and Quantum Theory GroupTulane UniversityNew OrleansUSA

Personalised recommendations