Van der Waals Interactions in Density Functional Theory

  • Ylva Andersson
  • Erika Hult
  • Henrik Rydberg
  • Peter Apell
  • Bengt I. Lundqvist
  • David C. Langreth

Abstract

The history of van der Waals or dispersion forces dates a long way back [1, 2]. The recent book Van der Waals and Molecular Sciences [1] gives a detailed account of van der Waals’s own contributions and life-long interest in the field. It is interesting to note that this truly quantum-mechanical problem [3, 4, 5] has been addressed by theorists long before the birth of quantum mechanics. The force between atoms, molecules, clusters, complexes, surfaces, and other fragments of matter is dominated by the weak but long-ranged van der Waals interactions at large separations. This is the region that has been primarily addressed. Calculations of the interaction potential between neutral species were first done for molecules [6, 7], leading to the well known asymptotic R−6 form of London [5]. The asymptotic z−3 form of the interaction potential between a neutral atom and a surface was first identified by Lennard-Jones [8], with subsequent refined treatments of the atom and surface polarizabilities [9, 10]. For the interaction between solid bodies, general formulas have been derived [11], which for flat surfaces a long distance d apart give an interaction energy that varies as d−2 [12]. For very large distances, where the limited magnitude of the velocity of light matters, retardation effects are important [13]. Such relativistic effects are physically interesting but beyond the scope of the present work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Y. Kipnis, B. E. Yavelov, and J. S. Rowlinson, Van der Waals and Molecular Sciences (Oxford, New York, 1996).Google Scholar
  2. 2.
    H. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon Press, Oxford, 1969).Google Scholar
  3. 3.
    D. Langbein, Theory of Van der Waals Attraction (Springer Verlag, Berlin, 1974).Google Scholar
  4. 4.
    R. Eisenshitz and F. London, Z. Phys. 60, 491 (1930).ADSCrossRefGoogle Scholar
  5. 5.
    F. London, Z. Phys. 63, 245 (1930).ADSMATHCrossRefGoogle Scholar
  6. 6.
    M. Reinganum, Ann. Phys. (Paris) 38, 649 (1912).ADSMATHGoogle Scholar
  7. 7.
    S. C. Wang, Z. Phys. 28, 663 (1927).MATHGoogle Scholar
  8. 8.
    J. E. Lennard-Jones, Trans. Faraday. Soc. 28, 333 (1932).CrossRefGoogle Scholar
  9. 9.
    J. H. de Boer, Trans. Faraday Soc. 32, 21 (1936).Google Scholar
  10. 10.
    H. C. Hamaker, Physica 4, 1058 (1937).ADSCrossRefGoogle Scholar
  11. 11.
    E. M. Lifshitz, Sov. Phys. 2, 73 (1956).Google Scholar
  12. 12.
    I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 73 (1961).MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).ADSMATHCrossRefGoogle Scholar
  14. 14.
    J. Israelachvilii, Intermolecular and Surface Forces (Academic, London, 1991).Google Scholar
  15. 15.
    A. Buckingham, P. Fowler, and J. Hutson, Chem. Rev. 88, 963 (1988).CrossRefGoogle Scholar
  16. 16.
    G. Chalasinski and M. M. Szczesinak, Chem. Rev. 94, 1723 (1994).CrossRefGoogle Scholar
  17. 17.
    See, e.g., U. Hartmann, in Scanning Tunneling Microscopy III, edited by R. Wiesendanger and H.-J. Guentherodt (Springer, Berlin-Heidelberg, 1993), p. 293.CrossRefGoogle Scholar
  18. 18.
    M. Spackman, J. Chem. Phys. 94, 1295 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    A. Landragin, J. Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, Phys. Rev. Lett. 77, 1464 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    J. Israelachvilii and H. Wennerström, Nature 379, 219 (1996).ADSCrossRefGoogle Scholar
  21. 21.
    S. Andersson, L. Wilzen, and M. Persson, Phys. Rev. B 38, 2967 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    S. Andersson, M. Persson, and J. Harris, Surf. Sci. 360, L499 (1996).CrossRefGoogle Scholar
  23. 23.
    R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    K. Burke, J. Perdew, and Y. Wang, “Derivation of a generalized gradient approximation: the PW91 density functional”, in this volume.Google Scholar
  25. 25.
    D. C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
  27. 27.
    D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).ADSCrossRefGoogle Scholar
  28. 28.
    J. Harris, Phys. Rev. B 31, 1770 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    J. F. Dobson, in Topics in Condensed Matter Physics, edited by M. P. Das (Nova, N. Y., 1994), p. 121.Google Scholar
  30. 30.
    B. I. Lundqvist, Y. Andersson, H. Shao, S. Chan, and D. C. Langreth, Int. J. Quantum. Chem. 56, 247 (1995).CrossRefGoogle Scholar
  31. 31.
    E. Zaremba and W. Kohn, Phys. Rev. B 13, 2270 (1976).ADSCrossRefGoogle Scholar
  32. 32.
    W. Kohn and W. Hanke, Short-and long-wavelength contributions to the exchange-correlation energy of a metal surface, unpublished.Google Scholar
  33. 33.
    K. Rapcewicz and N. W. Ashcroft, Phys. Rev. B 44, 4032 (1991).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Andersson, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 76, 102 (1996).ADSCrossRefGoogle Scholar
  35. 35.
    E. Hult, Y. Andersson, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. Lett. 77, 2029 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    J. F. Dobson and B. P. Dinte, Phys. Rev. Lett. 76, 1780 (1996).ADSCrossRefGoogle Scholar
  37. 37.
    J. F. Dobson, B. P. Dinte, and J. Wang, “Van der Waals functionals via local approximations for susceptibilities”, in this volume.Google Scholar
  38. 38.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    D. C. Langreth and S. H. Vosko, in Advances in Quantum Chemistry, edited by S. B. Trickey (Academic Press, New York, 1990), Vol. 21, p. 175.Google Scholar
  41. 41.
    D. C. Langreth and S. H. Vosko, Phys. Rev. Lett. 59, 497 (1987).ADSCrossRefGoogle Scholar
  42. 42.
    S. Lundqvist, Ark. Phys. 28, 399 (1965).Google Scholar
  43. 43.
    A. Zangwill and A. H. Levine, Am. J. Phys. 53, 1177 (1985).ADSCrossRefGoogle Scholar
  44. 44.
    A. Bagchi, N. Kar, and R. G. Barrera, Phys. Rev. Lett. 40, 803 (1978).ADSCrossRefGoogle Scholar
  45. 45.
    K. L. Kliewer, Surf. Sci. 101, 57 (1980).ADSCrossRefGoogle Scholar
  46. 46.
    P. Apell, Physica Scripta 25, 57 (1982).ADSCrossRefGoogle Scholar
  47. 47.
    P. Ahlqvist and P. Apell, Physica Scripta 25, 587 (1982).ADSCrossRefGoogle Scholar
  48. 48.
    P. J. Feibelman, Prog. in Surf. Sci. 12, 287 (1982).ADSCrossRefGoogle Scholar
  49. 49.
    D. C. Langreth and M. J. Mehl, Phys. Rev. Lett. 47, 446 (1981).ADSCrossRefGoogle Scholar
  50. 50.
    D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 18090 (1983).CrossRefGoogle Scholar
  51. 51.
    C. Mavroyannis and M. J. Stephen, Mol. Phys. 5, 629 (1962).ADSCrossRefGoogle Scholar
  52. 52.
    K. T. Tang, J. M. Norbeck, and P. R. Certain, J. Chem. Phys. 64, 3063 (1976).ADSCrossRefGoogle Scholar
  53. 53.
    G. Mahan, J. Chem. Phys. 76, 493 (1982).ADSCrossRefGoogle Scholar
  54. 54.
    A. Dalgarno and W. Davison, in Advanced Atomic and Molecular Physics 2, edited by D. Bates and I. Esterman (Academic, Orlando, 1966).Google Scholar
  55. 55.
    F. Maeder and W. Kutzelnigg, Chem. Phys 42, 95 (1979).CrossRefGoogle Scholar
  56. 56.
    M. Marinescu, H. Sadeghpour, and A. Dalgarno, Phys. Rev. 49, 982 (1994).ADSCrossRefGoogle Scholar
  57. 57.
    E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).ADSCrossRefGoogle Scholar
  58. 58.
    Y. Andersson and H. Rydberg, J. Chem. Phys., in press.Google Scholar
  59. 59.
    In Biosym, a program package available from Molecular Simulations Inc.Google Scholar
  60. 60.
    W. Rijks, M. van Heeringen, and P. Wormer, J. Chem. Phys. 90, 6501 (1989).ADSCrossRefGoogle Scholar
  61. 61.
    S. van Gisbergen, J. Snijders, and E. Baerends, J. Chem. Phys. 103, 9347 (1995).ADSCrossRefGoogle Scholar
  62. 62.
    W. Rijks and P. Wormer, J. Chem. Phys. 90, 6507 (1989).ADSCrossRefGoogle Scholar
  63. 63.
    R. Amos, N. Handy, P. Knowles, J. Rice, and A. Stone, J. Phys. Chem. 89, 2186 (1985).CrossRefGoogle Scholar
  64. 64.
    A. Kumar and W. Meath, Mol. Phys. 75, 311 (1992).ADSCrossRefGoogle Scholar
  65. 65.
    B. Jhanwar and W. Meath, Chem. Phys 67, 186 (1982).ADSCrossRefGoogle Scholar
  66. 66.
    A. Dalgarno, Adv. Chem. Phys 12, 143 (1967).CrossRefGoogle Scholar
  67. 67.
    A. Liebsch, Phys. Rev. B 33, 7249 (1986).ADSCrossRefGoogle Scholar
  68. 68.
    Y. Andersson, E. Hult, D. C. Langreth, and B. I. Lundqvist, in Proceedings of the 18th Taniguchi Symposium: Elementary Processes in Excitations and Reactions on Solid Surfaces, edited by A. Okiji, H. Kasai, and K. Makoshi (Springer, Berlin, 1996), p. 52.CrossRefGoogle Scholar
  69. 69.
    C. Holmberg, P. Apell, and J. Giraldo, Physica Scripta 33, 173 (1986).ADSCrossRefGoogle Scholar
  70. 70.
    B. N. J. Persson and P. Apell, Phys. Rev. B 27, 6058 (1983).ADSCrossRefGoogle Scholar
  71. 71.
    B. N. J. Persson and E. Zaremba, Phys. Rev. B 30, 5669 (1984).ADSCrossRefGoogle Scholar
  72. 72.
    D. M. Bishop and J. Pipin, J. Chem. Phys. 97, 3375 (1992).ADSCrossRefGoogle Scholar
  73. 73.
    H. Gollisch, J. Phys. B 17, 1463 (1984).ADSCrossRefGoogle Scholar
  74. 74.
    M. Persson, private communication, 1996.Google Scholar
  75. 75.
    J. P. Perdew, H. Q. Tran, and E. D. Smith, Phys. Rev. B 42, 11627 (1990).ADSGoogle Scholar
  76. 76.
    A. Kiejna, Phys. Rev. B 47, 7361 (1993).ADSGoogle Scholar
  77. 77.
    E. Huit and A. Kiejna, Surf. Sci. 383, 88 (1997).ADSCrossRefGoogle Scholar
  78. 78.
    Y. Andersson, E. Huit, P. Apell, D. C. Langreth, and B. I. Lundqvist, submitted to Solid State Commun.Google Scholar
  79. 79.
    W. Kohn and A. Yaniv, Phys. Rev. B 20, 4948 (1979).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ylva Andersson
    • 1
  • Erika Hult
    • 1
  • Henrik Rydberg
    • 1
  • Peter Apell
    • 1
  • Bengt I. Lundqvist
    • 1
  • David C. Langreth
    • 2
  1. 1.Department of Applied PhysicsChalmers University of Technology and Göteborg UniversityGöteborgSweden
  2. 2.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations