Homeostasis in vertebrates is tightly regulated by cell death as well as by cell proliferation. The death of cells during embryogenesis, metamorphosis, endocrine-dependent tissue atrophy, and normal tissue turnover is “programmed cell death”, mediated by a process called “apoptosis”. Cytotoxic T lymphocytes and natural killer cells kill the target cells by inducing apoptosis. Apoptosis can be distinguished from necrosis, which occurs as a result of injury, complement attack, severe hypoxia and hyperthermia. Morphological and biochemical analyses of the apoptotic cell death process indicated that apoptosis is accompanied by condensation of cytoplasm, loss of plasma membrane microvilli, segmentation of nucleus, and extensive degradation of chromosomal DNA into oligomers of 180 bp. Cellular proliferation and differentiation are mediated by a family of proteins called cytokines. Our studies on the Fas ligand and Fas have indicated that apoptosis is also mediated by a cytokine and its receptor in some cases. Here, I summarize the current status of the Fas death factor system.


FasL Gene Affinity Nerve Growth Factor Receptor Human FasL Tumor Necrosis Factor Receptor Signal Generalize Lymphoproliferative Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Yonehara, A. Ishii, and M. Yonehara. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169: 1747 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Nagata, and P. Golstein. The Fas death factor. Science 267: 1449 (1995).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Watanabe-Fukunaga, C.I. Brannan, N. Itoh, S. Yonehara, N.G. Copeland, N.A. Jenkins, and S. Nagata. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148: 1274 (1992).PubMedGoogle Scholar
  5. 5.
    E. Rouvier, M.-F. Luciani, and P. Golstein. Fas involvement in Cat+-independent T cell-mediated cytotoxicity. J. Exp. Med. 177: 195 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Suda, and S. Nagata. Purification and characterization of the Fas ligand that induces apoptosis. J. Exp. Med. 179: 873 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Suda, T. Takahashi, P. Golstein, and S. Nagata. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 75: 1169 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Griffith, T. Brunner, S. Fletcher, D. Green, and T. Ferguson. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270: 1189 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Pennica, G.E. Nedwin, J.S. Hayflick, P.H. Seeburg, R. Derynck, M.A. Palladino, W.J. Kohr, B.B. Aggarwal, and D.V. Goeddel. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312: 724 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Tanaka, T. Suda, T. Takahashi, and S. Nagata. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBOJ. 14: 1129 (1995).Google Scholar
  11. 11.
    M. Tanaka, T. Suda, K. Haze, N. Nakamura, K. Sato, F. Kimura, K. Motoyoshi, M. Mizuki, S. Tagawa, S. Ohga, K. Hatake, A. Drummond, and S. Nagata. Fas ligand in human serum. Nature Medicine 2: 317 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    B.C. Trauth, C. Klas, A.M.J. Peters, S. Matzuku, P. Möller, W. Falk, K.-M. Debatin, and P.H. Krammer. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Dhein, P.T. Daniel, B.C. Trauth, A. Oehm, P. Möller, and P.H. Krammer. Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J. Immunol. 149: 3166 (1992).PubMedGoogle Scholar
  14. 14.
    N. Itoh, and S. Nagata. A novel protein domain required for apoptosis: mutational analysis of human Fas antigen. J. Biol. Chem. 268: 10932 (1993).PubMedGoogle Scholar
  15. 15.
    L.A. Tartaglia, T.M. Ayres, G.H.W. Wong, and D.V. Goeddel. A novel domain within the 55 kd TNF receptor signals cell death. Cell 74: 845 (1993).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Schulze-Osthoff, H. Walczak, W. Dröge, and P.H. Krammer. Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol. 127: 15 (1994).PubMedCrossRefGoogle Scholar
  17. 17.
    A.M. Chinnaiyan, K. O’Rourke, M. Tewari, and V.M. Dixit. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505 (1995).PubMedCrossRefGoogle Scholar
  18. 18.
    B.Z. Stanger, P. Leder, T.-H. Lee, E. Kim, and B. Seed. RIP: A novel protein containing a death domain that interacts with FAS/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513 (1995).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita, P. Krammer, and M. Peter. Cytotoxicitydependent APO-1 (Fas/CD95)-associated proteins from a death-inducing signaling complex (DISC) with the receptor. EMBOJ. 14: 5579 (1995).Google Scholar
  20. 20.
    M. Enari, H. Hug, and S. Nagata. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375: 78 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    N. Itoh, Y. Tsujimoto, and S. Nagata. Effect of bcl-2 on Fas antigen-mediated cell death. J. Immunol. 151: 621 (1993).PubMedGoogle Scholar
  22. 22.
    I. Rodriguez, K. Matsuura, K. Khatib, J. Reed, S. Nagata, and P. Vassalli. A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection. J. Exp. Med.,in press (1996).Google Scholar
  23. 23.
    M. Enari, R.V. Talanian, W.W. Wong, and S. Nagata. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature,in press (1996).Google Scholar
  24. 24.
    M. Enari, A. Hase, and S. Nagata. Apoptosis by a cytosolic extract from Fas-activated cells. EMBO J. 14: 5201 (1995).PubMedGoogle Scholar
  25. 25.
    T. Suda, T. Okazaki, Y. Naito, T. Yokota, N. Arai, S. Ozaki, K. Nakao, and S. Nagata. Expression of the Fas ligand in T-cell-lineage. J. Immunol. 154: 3806 (1995).PubMedGoogle Scholar
  26. 26.
    H. Arase, N. Arase, and T. Saito. Fas-mediated cytotoxicity by freshly isolated natural killer cells. J. Exp. Med. 181: 1235 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Watanabe-Fukunaga, C.I. Brannan, N.G. Copeland, N.A. Jenkins, and S. Nagata. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Adachi, R. Watanabe-Fukunaga, and S. Nagata. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of 1pr mice. Proc. Natl. Acad. Sci. USA 90: 1756 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Takahashi, M. Tanaka, C.I. Brannan, N.A. Jenkins, N.G. Copeland, T. Suda, and S. Nagata. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76: 969 (1994).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Nagata, and T. Suda. Fas and Fas ligand: 1pr and gld mutations. Immunol. Today 16: 39 (1995).PubMedCrossRefGoogle Scholar
  31. 31.
    D. Watanabe, T. Suda, H. Hashimoto, and S. Nagata. Constitutive activation of the Fas ligand gene in mouse lymphoproliferative disorders. EMBO J 14: 12 (1995).PubMedGoogle Scholar
  32. 32.
    M. Adachi, S. Suematsu, T. Suda, D. Watanabe, H. Fukuyama, J. Ogasawara, T. Tanaka, N. Yoshida, and S. Nagata. Enhanced and accelerated lymphoproliferation in Fas-null mice. Proc. Natl. Acad. Sci. USA 93: 2137 (1996).CrossRefGoogle Scholar
  33. 33.
    D. Watanabe, T. Suda, and S. Nagata. Expression of Fas in B cells of the mouse germinal center and Fas-dependent killing of activated B cells. Int. Immunology 7: 1949 (1995).CrossRefGoogle Scholar
  34. 34.
    M. Adachi, S. Suematsu, T. Kondo, J. Ogasawara, T. Tanaka, N. Yoshida, and S. Nagata. Targeted mutation in the Fas gene causes hyperplasia in the peripheral lymphoid organs and liver. Nature Genetics 11: 294 (1995).PubMedCrossRefGoogle Scholar
  35. 35.
    J. Ogasawara, R. Watanabe-Fukunaga, M. Adachi, A. Matsuzawa, T. Kasugai, Y. Kitamura, N. Itoh, T. Suda, and S. Nagata. Lethal effect of the anti-Fas antibody in mice. Nature 364: 806 (1993).PubMedCrossRefGoogle Scholar
  36. 36.
    N. Hiramatsu, N. Hayashi, K. Katayama, K. Mochizuki, Y. Kawanishi, A. Kasahara, H. Fusamoto, and T. Kamada. Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 19: 1354 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Shigekazu Nagata
    • 1
  1. 1.Osaka Bioscience InstituteOsaka University Medical SchoolSuita, Osaka 565Japan

Personalised recommendations