Structural Adaptations of Early Archaeocete Long Bones

  • Sandra I. Madar
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)

Abstract

Fossil remains recovered during the past decade have provided the first glimpse of the appendicular skeleton of early cetaceans (Gingerich et al., 1990, 1993, 1994, 1995; Hulbert and Petkewich, 1991; Aleshire, 1993; Madar and Thewissen, 1994; Hulbert, 1994, this volume; Thewissen et al., 1994, 1996). When coupled with archaeocete craniofacial, dental, and axial remains, a much clearer picture is emerging of the morphological transitions that occurred during cetacean evolution. The ancestry of modern cetaceans is linked at present to the terrestrial mesonychian condylarths (Van Valen, 1966; Prothero et al., 1988; Thewissen, 1994). Members of this group possess postcranial features linked to cursoriality, though emphasizing endurance rather than speed (Szalay and Gould, 1966; Zhou et al., 1992; O’Leary and Rose, 1995). Given this ancestry, early archaeocete postcranial skeletons should document the series of structural modifications that occurred in a move from complete terrestrial competence, through an amphibious or semiaquatic stage, to the type of highly specialized aquatic locomotion that characterizes modern cetaceans (Thewissen et al., 1996; Thewissen and Fish, 1997; Buchholtz, this volume).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleshire, D. P. 1993. Functional morphology and locomotion in an early Eocene protocetid from Georgia. J. Vertebr. Paleontol. 13:24A.CrossRefGoogle Scholar
  2. Backhouse, K. M. 1961. Locomotion of seals with particular reference to the forelimb. Symp. Zool. Soc. London 5:59–75.Google Scholar
  3. Barnes, L. G., and Mitchell, E. 1978. Cetacea, in: V. J. Maglio and H. B. S. Cooke (eds.), Evolution of African Mammals, pp. 582–602. Harvard University Press, Cambridge, MA.Google Scholar
  4. Berta, A., Ray, C. E., and Wyss, A. R. 1989. Skeleton of the oldest known pinniped, Enaliarctos mealsi. Science 244:60–62.PubMedCrossRefGoogle Scholar
  5. Buffrénil, V., de, Ricqlès, A. de, Ray, C. E., and Domning, D. P. 1990. Bone histology of the ribs of the archaeocetes (Mammalia, Cetacea). J. Vertebr. Paleontol. 10(4):455–466.CrossRefGoogle Scholar
  6. Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. Freeman, San Francisco.Google Scholar
  7. Carter, D. R., Orr, T. E., and Fyhrie, D. P. 1989. Relationships between loading history and femoral cancellous bone architecture. J. Biomech. 22:231–244.PubMedCrossRefGoogle Scholar
  8. Carter, D. R., Wong, M., and Orr, T. E. 1991. Musculoskeletal ontogeny, phylogeny, and functional adaptation. J. Biomech. 24:3–16.PubMedCrossRefGoogle Scholar
  9. Currey, J. D. 1984. The Mechanical Adaptations of Bones. Princeton University Press, Princeton, NJ.Google Scholar
  10. Currey, J. D., and Alexander, R. M. 1985. The thickness of the walls of tubular bones. J. Zool. London (A) 206:453–468.CrossRefGoogle Scholar
  11. Daniel, T. L., and Webb, P. W. 1987. Physical determinants of locomotion, in: P. DeJours, L. Bolis, C. R. Taylor, and E. R. Weibel (eds.), Comparative Physiology: Life in Water and on Land, pp. 343–369. Liviana Press, New York.Google Scholar
  12. Domning, D. P., and Buffrénil, V. de 1991. Hydrostasis in the Sirenia: quantitative data and functional interpretations. Mar. Mamm. Sci. 7(4):331–368.CrossRefGoogle Scholar
  13. English, A. W. 1977. Structural correlates of forelimb function in für seals and sea lions. J. Morphol. 151:325–352.PubMedCrossRefGoogle Scholar
  14. Enlow, D. H. 1964. Principles of Bone Remodeling. Thomas, Springfield, IL.Google Scholar
  15. Felts, W. J., and Spurrell, F. A. 1965. Structural orientation and density in cetacean humeri. Am. J. Anat. 116:171–204.PubMedCrossRefGoogle Scholar
  16. Felts, W. J. L., and Spurrell, F. A. 1966. Some structural and developmental characteristics of cetacean (Odontocete) radii. A study of adaptive osteogenesis. Am. J. Anat. 118:103–134.PubMedCrossRefGoogle Scholar
  17. Fish, F. E. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 36:628–641.Google Scholar
  18. Fish, F. E., and Stein, B. R. 1991. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorph. 110:339–345.CrossRefGoogle Scholar
  19. Gingerich, P. D., and Uhen, M. D. 1996. Ancalecetus simonsi, a new dorudontine archaeocete (Mammalia, Cetacea) from the early late Eocene of Wadi Hitan, Egypt. Contrib. Mus. Paleontol. Univ. Michigan 29(13):359–401.Google Scholar
  20. Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hind limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science 249:154–157.PubMedCrossRefGoogle Scholar
  21. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1993. Partial skeletons of Indocetus ramani (Mammalia, Cetacea) from the lower middle Eocene Domanda Shale in the Sulaiman Range of Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 28(16):393–416.Google Scholar
  22. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847.CrossRefGoogle Scholar
  23. Gingerich, P. D. Arif, M., and Clyde, W. C. 1995. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 29(11):291–330.Google Scholar
  24. Howell, A. B. 1930. Aquatic Mammals: Their Adaptation to Life in the Water. Thomas, Springfield, IL.Google Scholar
  25. Hulbert, R. C., Jr. 1994. Phylogenetic analysis of Eocene whales (“Archaeoceti”) with a diagnosis of a new North American protocetid genus. J. Vertebr. Paleontol. 14:30A.Google Scholar
  26. Hulbert, R. C., Jr., and Petkewich, R. M. 1991. Innominate of a middle Eocene (Lutetian) protocetid whale from Georgia. J. Vertebr. Paleontol. 11:36A.Google Scholar
  27. Kellogg, R. 1936. A review of the Archaeoceti. Carnegie Inst. Washington Publ. 482:1–366.Google Scholar
  28. Kooyman, G. L. 1973. Respiratory adaptations in marine mammals. Am. Zool. 13:457–468.Google Scholar
  29. Kooyman, G. L. 1989. Diverse Divers. Springer, Berlin.CrossRefGoogle Scholar
  30. Madar, S. I., and Thewissen, J. G. M. 1994. Vertebral morphology of Ambulocetus, an Eocene cetacean from the Kuldana Formation (Pakistan). J. Vertebr. Paleontol. 14:35A.Google Scholar
  31. Massare, J. 1994. Swimming capabilities of Mesozoic marine reptiles: a review, in: L. Maddock, Q. Bone, and J. V. M. Rayner (eds.), Mechanics and Physiology of Animal Swimming, pp. 133–150. Cambridge University Press, London.CrossRefGoogle Scholar
  32. Meister, W. 1962. Histological structure of the long bones of penguins. Anat. Rec. 143:377–388.PubMedCrossRefGoogle Scholar
  33. Nowak, R. M. 1991. Walker’s Mammals of the World, 5th ed. Johns Hopkins University Press, Baltimore.Google Scholar
  34. O’Leary, M. A., and Rose, K. D. 1995. Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia, Mesonychia). J. Vertebr. Paleontol. 15:401–430.CrossRefGoogle Scholar
  35. Prothero, D. R., Manning, E. M., and Fischer, M. 1988. The phytogeny of the ungulates, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 201–234. Clarendon Press, Oxford.Google Scholar
  36. Ridgway, S. H., and Howard, R. 1979. Dolphin lung collapse and intra-muscular circulation during free diving: Evidence from nitrogen washout. Science 206:1182–1183.PubMedCrossRefGoogle Scholar
  37. Slijper, E. J. 1946. Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh. K. Ned. Akad. Wet. Afd. Natuurkd. 62:1–128.Google Scholar
  38. Stein, B. R. 1989. Bone density and adaptation in semi-aquatic mammals. J. Mammal. 70:467–476.CrossRefGoogle Scholar
  39. Szalay, F. S., and Gould, S. J. 1966. Asiatic Mesonychidae (Mammalia, Condylarthra). Bull. Am. Mus. Nat. Hist. 132:129–173.Google Scholar
  40. Taylor, M. A. 1994. Stone, bone or blubber? Buoyancy control strategies in aquatic tetrapods, in: L. Maddock, Q. Bone, and J. M. V. Rayner (eds.), Mechanics and Physiology of Animal Swimming, pp. 151–209. Cambridge University Press, London.CrossRefGoogle Scholar
  41. Taylor, W. P. 1914. The problem of aquatic adaptation in the Carnivora, as illustrated in the osteology and evolution of the sea otter. Bull. Dep. Geol. Univ. Calif. 7(25):465–495.Google Scholar
  42. Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2(3):157–184.CrossRefGoogle Scholar
  43. Thewissen, J. G. M., and Fish, F. E. 1997. Locomotor evolution in the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology 123:482–490.Google Scholar
  44. Thewissen, J. G. M., and Hussain, S. T. 1990. Postcranial osteology of the most primitive artiodactyl Diacodexis pakistanensis (Dichobunidae). Anat. Histol. Embryol. 19:37–48.PubMedCrossRefGoogle Scholar
  45. Thewissen, J. G. M., Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212.PubMedCrossRefGoogle Scholar
  46. Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-lnst. Senckenberg 191:1–86.Google Scholar
  47. Uhen, M. D. 1996. Dorudon atrox (Mammalia, Cetacea): form, function, and phylogenetic relationships of an archaeocete from the late middle Eocene of Egypt. Ph.D. dissertation, University of Michigan, Ann Arbor, 608 pp.Google Scholar
  48. Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bull. Am. Mus. Nat. Hist. 132:1–126.Google Scholar
  49. Wall, W. P. 1983. The correlation between high limb-bone density and aquatic habits in recent mammals. J. Paleontol. 57(2):197–207.Google Scholar
  50. Webb, P. W. 1988. Simple physical principles and vertebrate aquatic locomotion. Am. Zool. 28:709–725.Google Scholar
  51. Webb, P. W., and Buffrénil, V. de 1990. Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119:629–641.CrossRefGoogle Scholar
  52. Zhou, X., Sanders, W. J., and Gingerich, P. D. 1992. Functional and behavioral implication of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contrib. Mus. Paleontol. Univ. Michigan 28:289–313.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Sandra I. Madar
    • 1
  1. 1.Department of BiologyHiram CollegeHiramUSA

Personalised recommendations