Implications of Vertebral Morphology for Locomotor Evolution in Early Cetacea

  • Emily A. Buchholtz
Part of the Advances in Vertebrate Paleobiology book series (AIVP, volume 1)


Living whales are among the small number of swimming tetrapods that locomote axially. It is clear that members of their terrestrial sister group, mesonychian condylarths (Prothero et al., 1988; Thewissen, 1994), were quadrupedal. The transition from a terrestrial habitat and paraxial, oscillatory limb locomotion to an aquatic habitat and axial undulatory locomotion was accompanied by marked changes in postcranial anatomy. Aspects of this locomotor transition can be reconstructed from a study of the vertebral columns of mesonychids and fossil and living whales. Examination of regional variation within the axial skeleton is a powerful and underutilized tool for the analysis of locomotor style (Slijper, 1946, 1961; Worthington and Wake, 1972; Crovetto, 1991; Long et al., 1997). Although almost invariably fragmentary, early cetacean postcranial skeletons are surprisingly informative, and can complement morphological indicators of diet, sensory specializations, and skull reorganization to fill in some of the gaps in our understanding of the dramatic transition of early cetaceans as they moved from land to water.


Marine Mammal Middle Eocene Sacral Vertebra Vertebral Count Terrestrial Locomotion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, L., and Mitchell, E. 1978. Cetacea, in: V. J. Maglio and H. B. S. Cooke (eds.), Evolution of African Mammals, pp. 582–602. Harvard University Press, Cambridge, MA.Google Scholar
  2. Beentjes, M. P. 1990. Comparative terrestrial locomotion of the Hooker’s sea lion (Phocarctos hookeri) and the New Zealand für seal (Arctocephalus forsten): evolutionary and ecological implications. Zool. J. Linn. Soc. 98:307–325.CrossRefGoogle Scholar
  3. Caldwell, D. K., and Caldwell, M. C. 1985. Manatees—Trichechus manatus, Trichechus senegalensis, and Trichechus inunguis, in: S. H. Ridgway and R. Harrison (eds.), Handbook of Marine Mammals, Volume 3, pp. 33–66. Academic Press, London.Google Scholar
  4. Crovetto, A. 1991. Etude osteometrique et anatomo-functionelle de la colonne vertebrale chez les grands cetacés. Invest. Cetacea 23:7–189.Google Scholar
  5. Curren, K., Bose, N., and Lien, J. 1994. Swimming kinematics of a harbor porpoise (Phocoena phocoena) and an Atlantic white-sided dolphin (Lagenorhynchus acutus). Mar. Mamm. Sci. 10(4):485–492.CrossRefGoogle Scholar
  6. Dawson, W. R., Bartholomew, G. A., and Bennett, A. F. 1977. A reappraisal of the aquatic specializations of the Galapagos marine iguana (Amblyrhynchus cristatus). Evolution 31:89–97.Google Scholar
  7. DeSmet, W. M. A. 1977. The regions of the cetacean vertebral column, in: R. J. Harrison (ed.), Functional Anatomy of Marine Mammals, Volume 3, pp. 58–80. Academic Press, New York.Google Scholar
  8. English, A. W. 1976. Limb movements and locomotor function in the California sea lion (Zalophus californianus). J. Zool. 178:341–364.CrossRefGoogle Scholar
  9. Feldkamp, S. D. 1987. Foreflipper propulsion in the California sea lion Zalophus californianus. J. Zool. 212:4333–4357.CrossRefGoogle Scholar
  10. Fish, F. E., and Hui, C. A. 1991. Dolphin swimming—a review. Mammal Rev. 21:181–195.CrossRefGoogle Scholar
  11. Fraas, E. 1904. Neue Zeuglodonten aus dem unteren Mitteleocän vom Mokattam bei Cairo. Geol. Palaeontol. Abh. N. F. 6:199–220.Google Scholar
  12. Gans, C. 1975. Tetrapod limblessness: evolution and functional corollaries. Am. Zool. 15:455–467.Google Scholar
  13. Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.PubMedCrossRefGoogle Scholar
  14. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1993. Partial skeletons of Indocetus ramani (Mammalia, Cetacea) from the lower middle Eocene Domanda Shale in the Sulaiman Range of Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 28(16):393–416.Google Scholar
  15. Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847.CrossRefGoogle Scholar
  16. Gingerich, P. D., Arif, M., and Clyde, W. C. 1995. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contrib. Mus. Paleontol. Univ. Michigan 29(11):291–330.Google Scholar
  17. Hartman, D. S. 1979. Ecology and behavior of the manatee (Trichechus manatus) in Florida. Spec. Publ. Am. Soc. Mammal. 5:1–153.Google Scholar
  18. Hildebrand, M. 1985. Walking and running, in: M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake (eds.), Functional Vertebrate Morphology, pp. 110–128. Belknap Press, Cambridge, MA.Google Scholar
  19. Hulbert, R. C. 1991. Innominate of a middle Eocene (Lutetian) protocetid whale from Georgia. J. Vertebr. Paleontol. 11(Suppl. to No. 3):36A.Google Scholar
  20. Hulbert, R. C. 1993. Craniodental anatomy and systematics of a middle Eocene protocetid whale from Georgia. J. Vertebr. Paleontol. 13(Suppl. to No. 3):42A.CrossRefGoogle Scholar
  21. Hulbert, R. C. 1994. Phylogenetic analysis of Eocene whales (“Archaeoceti”) with a diagnosis of a new North American protocetid genus. J. Vertebr. Paleontol. 14(Suppl. to No. 3):30A.Google Scholar
  22. Kaiser, H. E. 1974. Morphology of the Sirenia. Karger, Basel.Google Scholar
  23. Kellogg, R. 1936. A Review of the Archaeoceti. Carnegie Inst. Washington Publ. 482:1–366.Google Scholar
  24. Kenyon, K. W. 1981. Sea otter, Enhydra lutris (Linnaeus, 1758), in: S. H. Ridgway and R. J. Harrison (eds.), Handbook of Marine Mammals. Volume 1, pp. 209–223. Academic Press, London.Google Scholar
  25. Kumar, K., and Sahni, A. 1986. Remingtonocetus harudiensis, new combination, a middle Eocene archaeocete (Mammalia, Cetacea) from western Kutch, India. J. Vertebr. Paleontol. 6:326–349.CrossRefGoogle Scholar
  26. Landes, R. 1976. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32:73–92.CrossRefGoogle Scholar
  27. Long, J. H., Pabst, D. A., Shepherd, W. R., and McLellan, W. A. 1997. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. J. Exp. Biol. 200:65–81.PubMedGoogle Scholar
  28. McShea, D. W. 1992. A metric for the study of evolutionary trends in the complexity of serial structures. Biol. J. Linn. Soc. 45:39–55.CrossRefGoogle Scholar
  29. Nishiwaki, M., and Marsh, H. 1985. Dugong—Dugong dugon, in: S. H. Ridgway and R. Harrison (eds.), Handbook of Marine Mammals, Volume 3, pp. 1–32. Academic Press, London.Google Scholar
  30. O’Leary, M. A., and Rose, K. D. 1995. Postcranial skeleton of the early Eocene mesonychid Pachyaena (Mammalia: Mesonychia). J. Vertebr. Paleontol. 15(2):410–430.Google Scholar
  31. Pabst, D. A. 1990. Axial muscles and connective tissues of the bottlenose dolphin, in: S. Leatherwood and R. R. Reeves (eds.), The Bottlenose Dolphin, pp. 51–67. Academic Press, New York.Google Scholar
  32. Pabst, D. A. 1993. Intramuscular morphology and tendon geometry of the epaxial swimming muscles of dolphins. J. Zool. 230:159–176.CrossRefGoogle Scholar
  33. Parry, D. A. 1949. The swimming of whales and a discussion of Gray’s paradox. J. Exp. Biol. 26:24–34.PubMedGoogle Scholar
  34. Prothero, D. R., Manning, E. M., and Fischer, M. 1988. The phylogeny of the ungulates, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 201–234. Clarendon Press, Oxford.Google Scholar
  35. Ray, G. C. 1963. Locomotion in pinnipeds. Nat. Hist. 72:10–21.Google Scholar
  36. Ritter, D. 1992. Lateral bending during lizard locomotion. J. Exp. Biol. 173:1–10.Google Scholar
  37. Slijper, E. J. 1936. Die Cetaceen. Vergleichend-Anatomisch und Systematisch. Capita Zool. 6–7:1–590.Google Scholar
  38. Slijper, E. J. 1946. Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh. K. Ned. Akad. Wet. Afd. Natuurkd. Tweede Reeks 42:1–128.Google Scholar
  39. Slijper, E. J. 1961. Locomotion and locomotory organs in whales and dolphins (Cetacea). Zool. Soc. London Symp. 5:77–94.Google Scholar
  40. Tarasoff, F. J., Bisaillon, A., Pierard, J., and Whit, A. P. 1972. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Can. J. Zool. 50:915–929.PubMedCrossRefGoogle Scholar
  41. Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2(3):157–184.CrossRefGoogle Scholar
  42. Thewissen, J. G. M., Hussain, S. T., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212.PubMedCrossRefGoogle Scholar
  43. Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996a. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.Google Scholar
  44. Thewissen, J. G. M., Roe, L. J., O’Neil, J. R., Hussain, S. T., Sahni, A., and Bajpai, S. 1996b. Evolution of cetacean osmoregulation. Nature 381:379–380.CrossRefGoogle Scholar
  45. Webb, P. W. 1982. Locomotor patterns in the evolution of actinopterygian fishes. Am. Zool. 22:329–342.Google Scholar
  46. Webb, P. W, and Blake, R. W. 1985. Swimming, in: M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake (eds.), Functional Vertebrate Morphology, pp. 110–128. Belknap Press, Cambridge, MA.Google Scholar
  47. Whitaker, R., and Basu, D. 1982. The gharial (Gavialis gangeticus): a review. J. Bombay Nat. Hist. Soc. 79:531–548.Google Scholar
  48. Worthington, R. D., and Wake, D. B. 1972. Patterns of regional variation in the vertebral column of terrestrial salamanders. J. Morphol. 137:257–277.CrossRefGoogle Scholar
  49. Zhou, X., Sanders, W. J., and Gingerich, P. D. 1992. Functional and behavioral implications of vertebral structure in Pachyaena ossifraga (Mammalia, Mesonychia). Contrib. Mus. Paleontol. Univ. Michigan 28:289–319.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Emily A. Buchholtz
    • 1
  1. 1.Department of Biological SciencesWellesley CollegeWellesleyUSA

Personalised recommendations