Pseudomonas pp 201-243 | Cite as

Iron Metabolism and Siderophores in Pseudomonas and Related Species

  • Jean-Marie Meyer
  • Alain Stintzi
Part of the Biotechnology Handbooks book series (BTHA, volume 10)


With the exception of mainly lactic acid bacteria (Archibald, 1983; Pandey et al., 1994), iron is required as an oligoelement by all living organisms and particularly by aerobic bacteria, such as Pseudomonas. Because of its redox potentialities, this element is involved in many, if not all, primary biological functions, e. g., electron transport, carbon metabolism, nitrogen fixation, and nucleic acid biosynthesis. Although abundant in nature, iron is, however, not readily available for bacteria because of its profound tendency to hydrolyze and polymerize at physiological pH under aerobiosis. Thus, solubilization of environmental iron by excretion of powerful iron-chelating secondary metabolites, i. e., the siderophores, is the most common way used by microorganisms to sustain their iron requirement.


Salicylic Acid Pseudomonas Aeruginosa Iron Uptake Iron Metabolism Pseudomonas Putida 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, G., Dowling, D. N., O’Sullivan, D. J., and O’Gara, F., 1994, Isolation of a gene (pbsC) required for siderophore biosynthesis in fluorescent Pseudomonas sp. strain Ml 14, Mol. Gen. Genet. 243: 515–524.PubMedGoogle Scholar
  2. Andriollo, N., Guarini, A., and Cassini, G., 1992, Isolation and characterization of pseudobactin B: A pseudobactin-type siderophore from Pseudomonas species strain PD30, J Agric. Food Chem. 40: 1245–1248.Google Scholar
  3. Ankenbauer, R. G., 1992, Cloning of the outer membrane high-affinity Fe(III)-pyochelin receptor of Pseudomonas aeruginosa, J. Bacteriol. 174: 4401–4409.PubMedGoogle Scholar
  4. Ankenbauer, R. G., and Cox, C. D., 1988, Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis, J. Bacteriol. 170: 5364–5367.PubMedGoogle Scholar
  5. Ankenbauer, R. G., and Quan, H. N., 1994, FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa, a phenolate siderophore receptor homologous to hydroxamate siderophore receptors, J. Bacteriol. 176: 307–319.PubMedGoogle Scholar
  6. Ankenbauer, R., Sriyosachati, S., and Cox, C. D., 1985, Effects of siderophores on the growth of Pseudomonas aeruginosa in human serum and transferrin, Infect. Immun. 49: 132–140.PubMedGoogle Scholar
  7. Ankenbauer, R., Hanne, L. F., and Cox, C. D., 1986, Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production, J. Bacteriol. 167: 7–11.PubMedGoogle Scholar
  8. Ankenbauer, R. G., Toyokuni, T., Staley, A., Rinehart, K. L., and Cox, C. D., 1988, Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa, J. Bacteriol. 170: 5344–5351.PubMedGoogle Scholar
  9. Anwar, H., Brown, M. R., Cozens, R. M., and Lambert, P. A., 1983, Isolation of the outer and cytoplasmic membranes of Pseudomonas cepacia, J. Gen. Microbiol. 129: 499–507.PubMedGoogle Scholar
  10. Archibald, F., 1983, Lactobacillus plantarum, an organism not requiring iron, FEMS Microbiol. Lett. 19: 29–32.Google Scholar
  11. Arnow, L. E., 1937, Colorimetrie determination of the components of 3,4-dihydroxy-phenylalanine-tyrosine mixtures, J Biol. Chem. 118: 531–537.Google Scholar
  12. Azegami, K., Nishiyama, K., and Kato, H., 1988, Effects of iron on “Pseudomonas plantarii” growth and tropolone and protein production, Appl. Environ. Microbiol. 54: 844–847.PubMedGoogle Scholar
  13. Azelvandre, P., 1993, Les deferriferrioxamines E et D2, sidérophores de Pseudomonas stutzeri, Thèse d’Université, Strasbourg, France.Google Scholar
  14. Aznar, R., and Alcaide, E., 1992, Siderophores and related outer membrane proteins produced by pseudomonads isolated from eels and freshwater, FEMS Microbiol. Lett. 98: 269–276.Google Scholar
  15. Bagg, A., and Neilands, J. B., 1987a, Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli, Biochemistry 26: 5471–5477.PubMedGoogle Scholar
  16. Bagg, A., and Neilands, J. B., 1987b, Molecular mechanism of regulation of siderophore-mediated iron assimilation, Microbiol. Rev. 51: 509–518.PubMedGoogle Scholar
  17. Barbhaiya, H. B., and Rao, K. K., 1985, Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1, FEMS Microbiol. Lett. 27: 233–235.Google Scholar
  18. Barker, W. R., Callaghan, C., Hill, L., Nobel, D., Acred, P., Harper, P. B., Sowa, M. A., and Fletton, R. A., 1979, G1549, a new cyclic hydroxamic acid antibiotic, isolated from culture broth of Pseudomonas alcaligenes, J. Antibiotics 32: 1096–1103.Google Scholar
  19. Berk, R. S., 1993, Genetic regulation of the murine corneal and non-corneal response to Pseudomonas aeruginosa, in: Pseudomonas aeruginosa as an Opportunistic Pathogen (M. Campa, M. Bendinelli and H. Friedman, eds.), Plenum Press, New York, pp. 183–206.Google Scholar
  20. Berner, I., Konetschny-Rapp, S., Jung, G., and Winkelmann, G., 1988, Characterization of ferrioxamine E as the principal siderophore of Erwinia herbicola (Enterobacter agglomerans), Biol. Metals 1: 51–56.Google Scholar
  21. Bevivino, A., Tabacchioni, S., Chiarini, L., Carusi, M. V., Del Gallo, M., and Visca, P., 1994, Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia, Microbiology 140: 1069–1077.PubMedGoogle Scholar
  22. Bickel, H., Booshardt, R., Gäumann, E., Reusser, P., Vischer, E., Voser, W., Wettstein, A., and Zähner, H., 1960, Stoffwechselprodukte von Actinomyceten. 26. Mitteilung, über die Isolierung und Charakterisierung der Ferrioxamine A-F, neuer Wuchstoffe der Sideramin-Gruppe, Helv. Chim. Acta 53: 2118–2128.Google Scholar
  23. Bitter, W., Marrug, J. D., de Weger, L. A., Tommassen, J., and Weisbeek, P. J., 1991, The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: Homology to TonB-dependent Escherichia coli receptors and specificity of the protein, Mol. Microbiol 5: 647–655.PubMedGoogle Scholar
  24. Bitter, W., Tommassen, J., and Weisbeek, P. J., 1993, Identification and characterization of exbB, exbD, and tonB genes of Pseudomonas putida WCS358: Their involvement in ferricpseudobactin transport, Mol. Microbiol. 7:117–130.PubMedGoogle Scholar
  25. Bitter, W., van Leeuwen, I. S., de Boer, J., Zomer, H. W. M., Koster, M. C., Weisbeek, P. J., and Tommassen, J., 1994, Localization of functional domains in the Escherichia coli coprogen receptor FhuE and the Pseudomonas putida ‘ferric-pseudobactin 358 receptor PupA, Mol. Gen. Genet. 245: 694–703.PubMedGoogle Scholar
  26. Bjorn, M. J., Sokol, P. A., and Iglewski, B. H., 1979, Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures, J. Bacteriol. 138: 193–200.PubMedGoogle Scholar
  27. Bodey, G. P., Bolivar, R., Fainstein, V., and Jadeja, L., 1983, Infections caused by Pseudomonas aeruginosa, Rev. Infect. Dis. 5: 279–313.PubMedGoogle Scholar
  28. Braun, V., and Hantke, K., 1991, Genetics of bacterial iron transport, in: Handbook of Microbial Chelates (G. Winkelmann, ed.), CRC Press, Boca Raton, Florida, pp. 107–138.Google Scholar
  29. Braun, V., Hantke, K., Eick-Helmerich, K., Köster, W., Pressler, U., Sauer, M., Schäffer, S., Schöffler, H., Staudenmaier, H., and Zimmermann, L., 1987, Iron transport systems in Escherichia coli, in: Iron Transport in Microbes, Plants, and Animals (G. Winkelmann, D. van der Helm and J. B. Neilands, eds.), VCH Verlagsgesellschaft, Weinheim, pp. 35–51.Google Scholar
  30. Briskot, G., Taraz, K., and Budzikiewicz, H., 1989, Pyoverdin-type siderophores from Pseudomonas aeruginosa. Liebigs Ann. Chem. 1989: 375–384.Google Scholar
  31. Britigan, B. E., Hayek, M. B., Doebbeling, B. N., and Fick, R. B., Jr., 1993, Transferrin and lactoferrin undergo proteolytic cleavage in the Pseudomonas aeruginosa-infected lungs of patients with cystic fibrosis, Infect. Immun. 61: 5049–5055.PubMedGoogle Scholar
  32. Brown, M. R. W., Anwar, H., and Lambert, P. A., 1984, Evidence that mucoid Pseudomonas aeruginosa in the cystic fibrosis lung grows under ironrrestricted conditions, FEMS Microbiol. Lett. 21: 113–117.Google Scholar
  33. Budzikiewicz, H., 1993, Secondary metabolites from fluorescent pseudomonads, FEMS Microbiol. Rev. 104: 209–228.Google Scholar
  34. Budzikiewicz, H., 1994, The biosynthesis of pyoverdins, Pure &apm; Appl. Chem. 66: 2207–2210.Google Scholar
  35. Budzikiewicz, H., Schröder, H., and Taraz, K., 1992, Zur Biogenese der Pseudomonos-Siderophore: Der Nachweis analoger Strukturen eines Pyoverdin-Desferriferribactin Paares, Z. Naturforsch. 47c: 26–32.Google Scholar
  36. Bukowits, G. J., Mohr, N., and Budzikiewicz, H., 1982, 2-phenylthiazol-derivatives from Pseudomonas cepacia, Z. Naturforsch. 37b:877–880.Google Scholar
  37. Bulen, W. A., and LeComte, J. R., 1962, Isolation and properties of a yellow-green fluorescent peptide from Azotobacter medium, Biochem. Biophys. Res. Commun. 9: 523–528.PubMedGoogle Scholar
  38. Burkholder, W. H., 1950, Sour skin, a bacterial rot of onion bulbs, Phytopathol. 40: 115–117.Google Scholar
  39. Buyer, J. S., and Leong, J., 1986, Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains, J. Biol. Chem. 261: 791–794.PubMedGoogle Scholar
  40. Buyer, J. S., Wright, J. S., and Leong, J., 1986, Structure of pseudobactin A214, a side-rophore from a bean-deleterious Pseudomonas, Biochemistry 25: 5492–5499.PubMedGoogle Scholar
  41. Buyer, J. S., de Lorenzo, V., and Neilands, J. B., 1991, Production of the siderophore aerobactin by a halophilic pseudomonad, Appl. Environ. Microbiol. 57: 2246–2250.PubMedGoogle Scholar
  42. Carlson, C. A., Pierson, L. S., Rosen, J. J., and Ingraham, J. L., 1983, Pseudomonas stutzeri and related species undergo natural transformation, J. Bacteriol. 153: 93–99.PubMedGoogle Scholar
  43. Chakraborty, R. N., Patel, H. N., and Desai, S. B., 1990, Isolation and partial characterization of catechol-type siderophore from Pseudomonas stutzeri RC 7, Curr. Microbiol. 20: 283–286.Google Scholar
  44. Champomier-Vergès, M. C., Stintzi, A., and Meyer, J. M., 1996, Acquisition of iron by the non-siderophore producing Pseudomonas fragi, Microbiology 142: 1191–1199.PubMedGoogle Scholar
  45. Cody, Y. S., and Gross, D. C., 1987, Characterization of pyoverdin Pss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 53: 928–934.PubMedGoogle Scholar
  46. Colmer, J. A., and Hamood, A. N., 1995, Isolation of a Pseudomonas aeruginosa chromosomal fragment which affects the regulation of siderophore production, Pseudomonas News Letter 20(3): 8.Google Scholar
  47. Cornelis, P., Moguilevsky, N., Jacques, J. F., and Masson, P. L., 1987, Study of the side-rophores and receptors in different clinical isolates of Pseudomonas aeruginosa, Antibiot. Chemother. 39: 290–306.PubMedGoogle Scholar
  48. Cornelis, P., Hohnadel, D., and Meyer, J. M., 1989, Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains, Infect. Immun. 57: 3491–3497.PubMedGoogle Scholar
  49. Cook, R. J., Thomashow, L. S., Weiler, D. M., Fujimoto, D., Mazzola, M., Bangera, G., and Kim, D., 1995, Molecular mechanisms of defense by rhizobacteria against root disease, Proc. Natl. Acad. Sci. USA 92: 4197–4201.PubMedGoogle Scholar
  50. Coves, J., and Fontecave, M., 1993, Reduction and mobilization of iron by a NAD(P)H:fla-vin oxidoreductase from Escherichia coli, Eur.J. Biochem. 211: 635–641.PubMedGoogle Scholar
  51. Cox, C. D., 1980, Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa, J. Bacteriol. 142: 581–587.PubMedGoogle Scholar
  52. Cox, C. D., 1982, Effect of pyochelin on the virulence of Pseudomonas aeruginosa, Infect. Immun. 36: 17–23.PubMedGoogle Scholar
  53. Cox, C. D., and Adams, P., 1985, Siderophore activity of pyoverdin for Pseudomonas aeruginosa, Infect. Immun. 48: 130–138.PubMedGoogle Scholar
  54. Cox, C. D., and Graham, R., 1979, Isolation of an iron-binding compound from Pseudomonas aeruginosa, J. Bacteriol. 137: 357–364.PubMedGoogle Scholar
  55. Cox, C. D., Rinehart, K. L., Moore, M. L., and Cook, J. C., 1981, Pyochelin: Novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 78: 4256–4260.PubMedGoogle Scholar
  56. Cunliffe, H. E., Merriman, T. R., and Lamont, I., 1995, Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor, J. Bacteriol. 177: 2744–2750.PubMedGoogle Scholar
  57. Cuypers, H., and Zumft, W. G., 1992, Regulatory components of the denitrification gene cluster of Pseudomonas stutzeri, in: Pseudomonas: Molecular Biology and Biotechnology (E. Galli, S. Silver, and B. Witholt, eds.), American Society for Microbiology, Washington, D.C., pp. 188–197.Google Scholar
  58. Csaky, T. Z., 1948, On the estimation of bound hydroxylamine in biological materials, Acta Chem. Scand. 2: 450–454.Google Scholar
  59. Dean, C. R., and Poole, K., 1993a, Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa, J. Bacteriol. 175: 317–324.PubMedGoogle Scholar
  60. Dean, C. R., and Poole, K., 1993b, Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: Involvement of a two-component regulatory system, Mol. Microbiol. 8: 1095–1103.PubMedGoogle Scholar
  61. Défago, G., and Haas, D., 1990, Pseudomonas as antagonists of soilborne plant pathogens: Modes of action and genetic analysis, in: Soil Biochemistry (J.-M. Bollag and G. Stotzky, eds.), Marcel Dekker, New York and Basel, Vol. 6, pp. 249–291.Google Scholar
  62. Démange, P., Bateman, A., Mertz, C., Dell, A., Piémont, Y., and Abdallah, M. A., 1990, Bacterial siderophores: Structures of pyoverdins Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual amino acid, Biochemistry 29: 11041–11051.PubMedGoogle Scholar
  63. de Weger, L. A., van Boxtel, R., van der Burg, B., Gruters, R. A., Geels, F. P., Schippers, B., and Lugtenberg, B., 1986, Siderophores and outer membrane proteins of anatagonis-tic, plant-growth-stimulating, root-colonizing Pseudomonas spp., J. Bacteriol. 165: 585–594.PubMedGoogle Scholar
  64. de Weger, L. A., von Arendonk, J. C. H. M., Recourt, K., van der Hofstad, G. A. J. M., Weisbeek, P. J., and Lugtenberg, B., 1988, Siderophore-mediated iron uptake in the plant-stimulating Pseudomonas putida WCS358 and other rhizosphere microorganisms, J. Bacteriol. 170: 4693–4698.PubMedGoogle Scholar
  65. de Weger, L. A., van der Bij, A. J., Dekkers, L. C., Simons, M., Wijffelman, A., and Lugtenberg, B. J. J., 1995, Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads, FEMS Microbiol. Ecol. 17: 221–228.Google Scholar
  66. Döhler, K., Huss, V. A. R., and Zumft, W. G., 1987, Transfer of Pseudomonas perfectomarina (Baumann, Bowditch, and Beaman 1983) to Pseudomonas stutzeri (Lehmann and Neumann 1896; Sijderius 1946), Int.J. Syst. Bacteriol. 37: 1–3.Google Scholar
  67. Döring, G., 1993, Pseudomonas aeruginosa lung infection in cystic fibrosis patients, in: Pseudomonas aeruginosa as an Opportunistic Pathogen (M. Campa, M. Bendinelli, and H. Friedman, eds.), Plenum Press, New York, pp. 245–273.Google Scholar
  68. Döring, G., Pfestorf, M., Botzenhart, K., and Abdallah, M. A., 1988, Impact of proteases on iron uptake of Pseudomonas aeruginosa pyoverdin from transferrin and lactoferrin, Infect. Immun. 56: 291–293.PubMedGoogle Scholar
  69. Elliot, R. P., 1958, Some properties of pyoverdine, the water-soluble pigment of the Pseudomonas, Appl. Microbiol. 6: 241–246.Google Scholar
  70. Fleiszig, S. M. J., Zaidi, T. S., Fletcher, E. L., Preston, M. J., and Pier, G. B., 1994, Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection, Infect. Immun. 62: 3485–3493.PubMedGoogle Scholar
  71. Fukasawa, K., and Goto, M., 1973, Biosynthesis of a heterocycle formed by iron-deficient Azotobacter vinelandii strain O, Biochim. Biophys. Acta 320: 545–548.PubMedGoogle Scholar
  72. Garibaldi, J. A., 1971, Influence of temperature on the iron metabolism of a fluorescent pseudomonad, J. Bacteriol. 105: 1036–1038.PubMedGoogle Scholar
  73. Garibaldi, J. A., 1972, Influence of temperature on the biosynthesis of iron transport compounds by Salmonella typhimurium, J. Bacteriol. 110: 262–265.PubMedGoogle Scholar
  74. Geisen, K., Taraz, K., and Budzikiewicz, H., 1992, Neue Siderophore des Pyoverdin-typs aus Pseudomonas fluorescens, Monatsh. Chem. 123: 151–178.Google Scholar
  75. Gensberg, K., Hughes, K., and Smith, A. W., 1992, Siderophore-specific induction of iron uptake in Pseudomonas aeruginosa, J. Gen. Microbiol. 138: 2381–2387.PubMedGoogle Scholar
  76. Gensberg, K., Doyle, E. J., Perry, D. J., and Smith, A. W., 1994, Uptake of BRL 41897A, a C(7) α-formamido substituted cephalosporin, via the ferri-pyochelin transport system of Pseudomonas aeruginosa, J. Antimicrob. Chemother. 34: 697–705.PubMedGoogle Scholar
  77. Georges, C., and Meyer, J. M., 1995, High-molecular-mass, iron-repressed cytoplasmic proteins in fluorescent Pseudomonas: Potential peptide-synthetases for pyoverdine biosynthesis, FEMS Microbiol. Lett. 132: 9–17.PubMedGoogle Scholar
  78. Gessner, A. R., and Mortensen, J. E., 1990, Pathogenic factors of Pseudomonas cepacia isolates from patients with cystic fibrosis, J. Med. Microbiol. 33: 115–120.PubMedGoogle Scholar
  79. Gillam, A. H., Lewis, A. G., and Andersen, R. J., 1981, Quantitative determination of hydroxamic acids, Anal. Chem. 53: 841–844.Google Scholar
  80. Gillis, M., Trân Van, V., Fernandez, M. P., Goor, M., Hebbar, P., Willems, A., Segers, P., Kersters, K., Heulin, T., and Bardin, R., 1995, Polyphasic taxonomy in Burkholderia leading to an amended description of the genus and proposition of Burkholderia vietna-miensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45: 274–289.Google Scholar
  81. Gipp, S., Hahn, J., Taraz, K., and Budzikiewicz, H., 1991, Zwei Pyoverdine aus Pseudomonas aeruginosa R, Z. Naturforsch. 46c: 534–541.Google Scholar
  82. Glick, B. R., 1995, The enhancement of plant growth by free-living bacteria, Can. J. Microbiol. 41: 109–117.Google Scholar
  83. Goetz, A., Yu, V. L., Hanchett, J. E., and Rihs, J. D., 1983, Pseudomonas stutzen bacteremia associated with hemodialysis, Arch. Intern. Med. 143: 1909–1912.PubMedGoogle Scholar
  84. Govan, J. R., Brown, P. H., Maddison, J., Doherty, C. J., Nelson, J. W., Dodd, M., Greening, A. P., and Webb, A. K., 1993, Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis, Lancet 342: 15–19.PubMedGoogle Scholar
  85. Gwose, I., and Taraz, K., 1992, Pyoverdine aus Pseudomonas putida, Z. Naturforsch. 47c: 487–502.Google Scholar
  86. Haas, B., Kraut, J., Marks, J., Zanker, S. C., and Castignetti, D., 1991, Siderophore presence in sputa of cystic fibrosis patients, Infect. Immun. 59: 3997–4000.PubMedGoogle Scholar
  87. Hallé, F., and Meyer, J. M., 1992a, Ferrisiderophore reductases of Pseudomonas. Purification, properties and location of the Pseudomonas aeruginosa ferripyoverdine reductase, Eur.J. Biochem. 209: 613–620.PubMedGoogle Scholar
  88. Hallé, F., and Meyer, J. M., 1992b, Iron release from ferrisiderophores. A multi-step mechanism involving a NADH/FMH oxidoreductase and a chemical reduction by FMNH2, Eur.J. Biochem. 209: 621–627.PubMedGoogle Scholar
  89. Hancock, D. K., and Reeder, D. J., 1993, Analysis and configuration assignments of the amino acids in a pyoverdine-type siderophore by reversed-phase high-performance liquid chromatography, J. Chromatogr. 646: 335–343.3Google Scholar
  90. Harding, R. A., and Royt, P., 1990, Acquisition of iron from citrate by Pseudomonas aeruginosa, J. Gen. Microbiol. 136: 1859–1867.PubMedGoogle Scholar
  91. Hebbar, K. P., Davey, A. G., Merrin, J., and Dart, P. J., 1992, Pseudomonas cepacia, a potential suppressor of maize soil-borne diseases-seed inoculation and maize root colonization, Soil. Biol. Biochem. 24: 999–1007.Google Scholar
  92. Heinrichs, D. E., and Poole, K., 1993, Cloning and sequence analysis of a gene (pchR) encoding an Ara C family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa, J. Bacteriol. 175: 5882–5889.PubMedGoogle Scholar
  93. Heinrichs, D. E., and Poole, K., 1996, PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor, J. Bacteriol. 178: 2586–2592.PubMedGoogle Scholar
  94. Heinrichs, D. E., Young, L., and Poole, K., 1991, Pyochelin-mediated iron transport in Pseudomonas aeruginosa: Involvement of a high-molecular-mass outer membrane protein, Infect. Immun. 59: 3680–3684.PubMedGoogle Scholar
  95. Höfte, M., Buysens, S., Koedam, N., and Cornelis, P., 1993, Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2, BioMetah 6: 85–91.Google Scholar
  96. Höfte, M., Dong, Q., Kourambas, S., Krishnapillai, V., Sherratt, D., and Mergeay, M., 1994, The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2 is a site-specific recombinase, Mol. Microbiol. 14: 1011–1020.PubMedGoogle Scholar
  97. Hohlneicher, U., Hartmann, R., Taraz, K., and Budzikiewicz, H., 1992, The structure of ferribactin from Pseudomonas fluorescens ATCC 13525, Z. Naturforsch. 47b: 1633–1638.Google Scholar
  98. Hohlneicher, U., Hartmann, R., Taraz, K., and Budzikiewicz, H., 1995, Pyoverdin, ferribactin, azotobactin-a new triade of siderophores from Pseudomonas chlororaphis ATCC 9446 and its relation to Pseudomonas fluorescens ATCC 13525, Z. Naturforsch. 50c: 337–344.Google Scholar
  99. Hohnadel, D., and Meyer, J. M., 1988, Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains, J. Bacteriol. 170: 4865–4873.PubMedGoogle Scholar
  100. Hohnadel, D., Haas, D., and Meyer, J. M., 1986, Mapping of mutations affecting pyover-dine production in Pseudomonas aeruginosa, FEMS Microbiol. Lett. 36: 195–199.Google Scholar
  101. Holder, I. A., 1993, Pseudomonas aeruginosa burn infections: Pathogenesis and treatment, in: Pseudomonas aeruginosa as an Opportunistic Pathogen (M. Campa, M. Bendinelli, and H. Friedman, eds.), Plenum Press, New York, pp. 275–295.Google Scholar
  102. Holloway, B. W., Römling, U., and Tümmler, B., 1994, Genomic mapping of Pseudomonas aeruginosa PAO, Microbiology 140: 2907–2929.PubMedGoogle Scholar
  103. Holmes, B., 1986a, Identification and distribution of Pseudomonas stutzen in clinical material, J. Appl. Bacteriol. 60: 401–411.PubMedGoogle Scholar
  104. Holmes, B., 1986b, The identification of Pseudomonas cepacia and its occurrence in clinical material, J. Appl. Bacteriol. 61: 299–314.PubMedGoogle Scholar
  105. Itoh, J., Miyadoh, S., Takahasi, S., Amano, S., Ezaki, N., and Yamada, Y., 1979, Studies on antibiotics BN-227 and BN227-F, new antibiotics. I. Taxonomy, isolation, and characterization, J. Antibiotics 32: 1089–1095.Google Scholar
  106. Jacques, P., Gwose, I., Seinsche, D., Taraz, K., Budzikiewicz, H., Schröder, H., Ongena, M., Thonart, P., 1993, Isopyoverdin Pp BTP1, a biogenetically interesting novel side-rophore from Pseudomonas putida, Nat. Prod. Lett. 3: 213–218.Google Scholar
  107. Jacques, P., Ongena, M., Gwose, I., Seinsche, D., Schröder, H., Delfosse, P., Thonart, P., Taraz, K., and Budzikiewicz, H., 1995, Structure and characterization of isopyoverdin from Pseudomonas putida BTP1 and its relation to the biogenetic pathway leading to pyoverdins, Z. Naturforsch. 50c: 622–629.Google Scholar
  108. Jayaswal, R. K., Fernandez, M., Upadhyay, R. S., Visintin, L., Kurz, M., Webb, J., and Rinehart, K., 1993, Antagonism of Pseudomonas cepacia against phytopathogenic fungi, Curr. Microbiol. 26: 17–22.PubMedGoogle Scholar
  109. Jurkevitch, E., Hadar, Y., Chen, Y., Libman, J., and Shanzer, A., 1992, Iron uptake and molecular recognition in Pseudomonas putida: Receptor mapping with ferrichrome and its biomimetic analogs, J. Bacteriol. 174: 78–83.PubMedGoogle Scholar
  110. Kachadourian, R., Dellagi, A., Laurent, J., Bricart, L., Kunesch, G., and Expert, D., 1996, Desferrioxamine-dependent iron transport in Erwinia amylovora CFBP1430: Cloning of the gene encoding the ferrioxamine receptor FoxR, BioMetals 9: 143–150.PubMedGoogle Scholar
  111. King, E. O., Ward, M. K., and Raney, D. F., 1954, Two simple media for the demonstration of pyocyanin and fluorescein, J. Lab. Clin. Med. 44: 301–307.PubMedGoogle Scholar
  112. Kisaalita, W S., Slininger, P. J., and Bothast, R. J., 1993, Defined media for optimal pyoverdine production by Pseudomonas fluorescens 2-79, Appl. Microbiol. Biotechnol. 39: 750–755.Google Scholar
  113. Kleinkauf, H., and von Döhren, H., 1987, Biosynthesis of peptide antibiotics, Annu. Rev. Microbiol. 41: 259–289.PubMedGoogle Scholar
  114. Kleinkauf, H., and von Döhren, H., 1990, Nonribosomal biosynthesis of peptide antibiotics, Eur.J. Biochem. 192: 1–15.PubMedGoogle Scholar
  115. Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N., 1980a, Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria, Nature 286: 885–886.Google Scholar
  116. Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N., 1980b, Pseudomonas siderophores: A mechanisms explaining disease suppressive soils, Curr. Microbiol. 4: 317–320.Google Scholar
  117. Koedam, N., Wittouck, E., Gaballa, A., Gillis, A., Höfte, M., and P. Cornelis, 1994, Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay, BioMetals 7: 287–291.PubMedGoogle Scholar
  118. Kolasa, T., and Miller, M. J., 1990, Synthesis of the chromophore of pseudobactin, a fluorescent siderophore from Pseudomonas, J. Org. Chem. 55: 4246–4255.Google Scholar
  119. Kontoghiorghes, G. J., 1987, Structure/iron binding activity of l-hydroxypyrid-2-one chelators intended for clinical use, Inorg. Chim. Acta 135: 145–150.Google Scholar
  120. Korth, H., Brüsewitz, G., and Pulverer, G., 1982, Isolation of an antibacterial active tro-polone from a Pseudomonas cepacia strain, Zbl. Bakt. Hyg. I, 252: 83–86.Google Scholar
  121. Koster, M., van de Vossenberg, J., Leong, J., and Weisbeek, P. J., 1993, Identification and characterization of the pupB gene encoding an inducible ferric-pseudobactin receptor of Pseudomonas putida WCS358, Mol. Microbiol. 8: 591–601.PubMedGoogle Scholar
  122. Koster, M., van Klompenburg, W., Bitter, W., Leong, J., and Weisbeek, P., 1994, Role for the outer membrane ferric siderophore receptor PupB in signal transduction across the bacterial cell envelope, EMBOJ. 13: 2805–2813.Google Scholar
  123. Krotzky, A., and Werner, D., 1987, Nitrogen fixation in Pseudomonas stutzen, Arch. Microbiol. 147: 48–57.Google Scholar
  124. Lacy, D. E., Spencer, D. A., Weiler, P. H., and Darbyshire, P., 1993, Chronic granulomatous disease presenting in childhood with Pseudomonas cepacia septicaemia, J. Infect. 27: 301–304.PubMedGoogle Scholar
  125. Lamont, I. A., 1994, Pseudomonas aeruginosa OT11 pyoverdine synthetase D (pvdD), ferripyoverdine receptor (fpvA), and pyoverdine synthetase E (pvdE) genes, complete cds. GenBank database release 82.0, accession number U07359.Google Scholar
  126. Lamont, I. A., 1995, personal communication.Google Scholar
  127. Leong, J., 1986, Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24: 187–209.Google Scholar
  128. Leoni, L., Ciervo, A., Orsi, N., and Visca, P., 1996, Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: Effect of Fur and PvdS on promoter activity, J. Bacteriol. 178: 2299–2313.PubMedGoogle Scholar
  129. Lim, H. S., Kim, Y. S., and Kim, S. D., 1991, Pseudomonas stutzen YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot, Appl. Environ. Microbiol. 57: 510–516.PubMedGoogle Scholar
  130. Lindberg, G. D., Larkin, J. M., and Whaley, H. A., 1980, Production of tropolone by a Pseudomonas, J. Nat. Prod. 43: 592–594.Google Scholar
  131. Linget, C., Azadi, P., MacLeod, J. K., Dell, A., and Abdallah, M., 1992, Bacterial siderophores: The structure of the pyoverdins of Pseudomonas fluorescens ATCC 13525, Tetrahedron Lett. 33: 1737–1740.Google Scholar
  132. Liu, P. V., and Shokrani, F., 1978, Biological activities of pyochelins: Iron chelating agents of Pseudomonas aeruginosa, Infect. Immun. 22: 878–890.PubMedGoogle Scholar
  133. Longerich, I., Taraz, K., Budzikiewicz, H., Tsai, L., and Meyer, J.-M., (1993), Pseudover-din, a compound related to the pyoverdine chromophore from a Pseudomonas aeruginosa strain incapable to produce pyoverdins. Z. Naturforsch. 48c: 425–429.Google Scholar
  134. Loper, J. E., Orser, C. S., Panopoulos, N. J., and Schroth, M. N., 1984, Genetic analysis of fluorescent pigment production in Pseudomonas syringae pv. syringae, J. Gen. Micro-biol. 130: 1507-1515.Google Scholar
  135. Magazin, M. D., Moores, J. C., and Leong, J., 1986, Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growth-promoting Pseudomonas strain, J. Biol. Chem. 261:795–799.PubMedGoogle Scholar
  136. Maksimova, N. P., Blazhevich, O. V., and Fomichev, Y. K., 1992, Role of phenylalanine in the biosynthesis of the fluorescent pigment of Pseudomonas putida, 61: 818–823.Google Scholar
  137. Maksimova, N. P., Blazhevich, O. V., and Fomichev, Y. K., 1993, The role of pyrimidines in the biosynthesis of the fluorescent pigment pyoverdin Pm in Pseudomonas putida M bacteria, Molekularn. Gen. Microbiol. Virusol. 5: 22–26.Google Scholar
  138. Marugg, J. D., van Spanje, M., Hoekstra, W. P. M., Schippers, B., and Weisbeek, P. J., 1985, Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358, J. Bacteriol. 164: 563–570.PubMedGoogle Scholar
  139. Marugg, J. D., Nielander, H. B., Horrevoets, A. J. G., van Megen, I., van Genderen, I., and Weisbeek, P. J., 1988, Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358, J. Bacteriol. 170: 1812–1819.PubMedGoogle Scholar
  140. Marugg, J. D., de Weger, L. A., Nielander, H. B., Oorthuizen, M., Recourt, K., Lugten-berg, B., van der Hofstad, G. A. J. M., and Weisbeek, P. J., 1989, Cloning and characterization of a gene encoding an outer membrane protein required for siderophore-mediated uptake of Fe3+ in Pseudomonas putida WCS358, J. Bacteriol. 171: 2819–2826.PubMedGoogle Scholar
  141. Maurer, B., Müller, A., Keller-Schierlein, W., and Zähner, H., 1968, Ferribactin, ein siderochrom aus Pseudomonas fluorescens Migula, Arch. Mikrobiol. 60: 326–339.PubMedGoogle Scholar
  142. Menhart, N., and Viswanatha, T., 1990, Precursor activation in a pyoverdine biosynthesis, Biochem. Biophys. Acta 1038: 47–51.PubMedGoogle Scholar
  143. Menhart, N., Thariath, A., and Viswanatha, T., 1991, Characterization of the pyoverdines of Azotobacter vinelandii ATCC12837 with regard to heterogeneity, Biol. Metals 4: 223–232.Google Scholar
  144. Merriman, T. R., Merriman, M. E., and Lamont, I. L., 1995, Nucleotide sequence of pvdD, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases, J. Bacteriol. 177: 252–258.PubMedGoogle Scholar
  145. Meyer, J. M., 1992, Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: Possible involvement of porin OprF in iron translocation, J. Gen. Microbiol. 138: 951–958.PubMedGoogle Scholar
  146. Meyer, J. M., and Abdallah, M. A., 1978, The fluorescent pigment of Pseudomonas fluorescens: Biosynthesis, purification, and physicochemical properties. J. Gen. Microbiol. 107: 319–328.Google Scholar
  147. Meyer, J. M., and Abdallah, M. A., 1980, The siderochromes of non-fluorescent pseu-domonads: Production of nocardamine by Pseudomonas stutzen, J. Gen. Microbiol. 118: 125–129.Google Scholar
  148. Meyer, J. M., and Hohnadel, D., 1992, use of nitrilotriacetic acid (NTA) by Pseudomonas species through iron metabolism, Appl. Microbiol. Biotechnol. 37: 114–118.Google Scholar
  149. Meyer, J. M., and Hornsperger, J.-M., 1978, Role of pyoverdinePf, the iron binding fluorescent pigment of Pseudomonas fluorescens in iron transport, J. Gen. Microbiol. 107: 329–331.Google Scholar
  150. Meyer, J. M., Mock, M., and Abdallah, M. A., 1979, Effect of iron on the protein composition of the outer membrane of fluorescent pseudomonads, FEMS Microbiol. Lett. 5: 395–398.Google Scholar
  151. Meyer, J. M., Hallé, F., Hohnadel, D., Lemanceau, P., and Ratefiarivelo, H., 1987, Siderophores of Pseudomonas-biological properties, in: Iron Transport in Microbes, Plants and Animals (G. Winkelmann, D. van der Helm, and J. B. Neilands, eds.), VCH Verlagsgesellschaft, Weinheim, pp. 188–205.Google Scholar
  152. Meyer, J. M., Hallé, F., and Hohnadel, D., 1989, Cepabactin from Pseudomonas cepacia, a new type of siderophores. J. Gen. Microbiol. 135: 1479–1487.PubMedGoogle Scholar
  153. Meyer, J. M., Hohnadel, D., Kahn, A., and Cornelis, P., 1990, Pyoverdine-facilitated iron uptake in Pseudomonas aeruginosa: Immunological characterization of the ferripyoverdine receptor. Mol. Microbiol. 4: 1401–1405.PubMedGoogle Scholar
  154. Meyer, J. M., Azelvandre, P., and Georges, C., 1992, Iron metabolism in Pseudomonas: Salicylic acid, a siderophore of Pseudomonas fluorescens CHAO. Biofactors 4: 23–27.PubMedGoogle Scholar
  155. Meyer, J. M., Tappe, R., Taraz, K., Budzikiewicz, H., de Vos, D., and Cornelis, P., 1993, The three pyoverdine species of Pseudomonas aeruginosa strains, Abstract PI3, Conference on Iron and Microbial Iron Chelates, Brugge, Belgium, November 5-6, 1993.Google Scholar
  156. Meyer, J. M., Trän Van, V., Stintzi, A., Berge, O., and Winkelmann, G., 1995, Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia). BioMetals 8: 309–317.PubMedGoogle Scholar
  157. Meyer, J. M., Neely, A., Stintzi, A., Georges, C., and Holder, I. A., 1996, Pyoverdine is essential for virulence of Pseudomonas aeruginosa, Infect. Immun. 64: 518–523.PubMedGoogle Scholar
  158. Michels, J., Benoni, H., Briskot, G., Lex, J., Schmickler, H., Taraz, K., Budzikiewicz, H., Korth, H., and Pulverer, G., 1991, Isolation and spectroscopic characterization of the pyoverdin chromophore and of its 5-hydroxy analogue. Z. Naturforsch. 46c: 993–1000.Google Scholar
  159. Mielczarek, E. V., Andrews, S. C., and Bauminger, R., 1992, Mössbauer spectroscopy and electron paramagnetic resonance studies of iron metabolites in Pseudomonas aeruginosa: Fe2+ and Fe3+ ferritin in 57ferripyoverdine incubated cells and 57ferric citrate fed cells, BioL Metals 5: 87–93.Google Scholar
  160. Misaghi, I. J., Olsen, M. W., Cotty, P. J., and Donndelinger, C. R., 1988, Fluorescent siderophore-mediated iron deprivation-a contingent biological mechanism, Soil Biol. Biochem. 20: 573–574.Google Scholar
  161. Miyazaki, H., Kato, H., Nakazawa, T., and Tsuda, M., 1995, A positive regulatory gene, pvdS, for expression of pyoverdin biosynthetic genes in Pseudomonas aeruginosa PAO, Mol. Gen. Genet. 248: 17–24.PubMedGoogle Scholar
  162. Mohn, G., Taraz, K., and Budzikiewicz, H., 1990, New pyoverdin-type siderophores from Pseudomonas fluorescens, Z. Naturforsch. 45b: 1437–1450.Google Scholar
  163. Moore, G. R., Mann, S., and Bannister, J. V., 1986, Isolation and properties of the complex nonheam-iron-containing cytochrome B-557 (bacterioferritin) from Pseudomonas aeruginosa, J. Inorg. Biochem. 28: 329–336.PubMedGoogle Scholar
  164. Moores, J. C., Magazin, M., Ditta, G. S., and Leong, J., 1984, Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain, J. Bacteriol. 157: 53–58.PubMedGoogle Scholar
  165. Morgan, M. K., and Chatterjee, A. K., 1988, Genetic organization and regulation of proteins associated with production of syringotoxin by Pseudomonas syringae pv. syringae, J. Bacteriol. 170: 5689–5697.PubMedGoogle Scholar
  166. Morris, J., O’Sullivan, D. J., Koster, M., Leong, J., Weisbeek, P. J., and O’Gara, F., 1992, Characterization of fluorescent siderophore-mediated iron uptake in Pseudomonas sp. strain Ml 14: Evidence for the existence of an additional ferric siderophore receptor, Appl. Environ. Microbiol. 58: 630–635.PubMedGoogle Scholar
  167. Münziger, M., 1995, Siderophore aus Pseudomonas solanacearum ATCC 11696, Diplomarbeit, Köln Universität, Köln, Germany.Google Scholar
  168. Neilands, J. B., 1957, Some aspects of microbial iron metabolism, Bacteriol. Rev. 21: 101–105.PubMedGoogle Scholar
  169. Neilands, J. B., 1981, Microbial iron compounds, Annu. Rev. Biochem. 50: 715–731.PubMedGoogle Scholar
  170. Neilands, J. B., 1982, Microbial envelope proteins related to iron, Annu. Rev. Microbiol. 36: 285–309.PubMedGoogle Scholar
  171. Neilands, J. B., and Nakamura, K., 1991, Detection, determination, isolation, characterization, and regulation of microbial iron chelates, in: Handbook of Microbial Iron Chelates (G. Winkelmann, ed.), CRC Press, Boca Raton, Florida, USA, pp. 1–14.Google Scholar
  172. Neilands, J. B., Konopka, K., Schwyn, B., Coy, M., Francis, R. T., Paw, B. H., and Bagg, A., 1987, Comparative biochemistry of microbial iron assimilation, in: Iron Transport in Microbes, Plants, and Animals (G. Winkelmann, D. van der Helm, and J. B. Neilands, eds.), VCH Verlaggesellschaft, Weinheim, Germany, pp. 3–33.Google Scholar
  173. Newkirk, J. D., and Hulcher, F. H., 1969, Isolation and properties of a fluorescent pigment from Pseudomonas mildenbergii, Arch. Biochem. Biophys. 134: 395–400.PubMedGoogle Scholar
  174. Nowak-Thomson, B., and Gould, S. J., 1994a, A simple assay for fluorescent siderophores produced by Pseudomonas species and an efficient isolation of pseudobactin, BioMetals 7: 20–24.Google Scholar
  175. Nowak-Thomson, B., and Gould, S. J., 1994b, Biosynthesis of the pseudobactin chromo-phore from tyrosine, Tetrahedron 50: 9865–9872.Google Scholar
  176. O’Hoy, K., and Krishnapillai, V., 1987, Recalibration of the Pseudomonas aeruginosa PAO strain chromosome map in time units using high-frequency-of-recombination donors, Genetics 115: 611–618.PubMedGoogle Scholar
  177. Okonya, J. F., Kolsa, T., and Miller, M. J., 1995, Synthesis of the peptide fragment of pseudobactin, J. Org. Chem. 60: 1932–1935.Google Scholar
  178. O’Sullivan, D. J., and O’Gara, F., 1990, Iron regulation of ferric iron uptake in a fluorescent pseudomonad: Cloning of a regulatory gene, Mol. Plant-Microbe Interact. 3: 86–93.Google Scholar
  179. O’Sullivan, D. J., and O’Gara, F., 1991, Regulation of iron assimilation: Nucleotide sequence analysis of an iron-regulated promoter from a fluorescent pseudomonad, Mol. Gen. Genet. 228: 1–8.PubMedGoogle Scholar
  180. O’Sullivan, D. J., and O’Gara, F., 1992, Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662–676.PubMedGoogle Scholar
  181. O’Sullivan, D. J., Morris, J., and O’Gara, F., 1990, Identification of an additional ferric-siderophore uptake gene clustered with receptor, biosynthesis, and fur-like regulatory genes in fluorescent Pseudomonas sp. strain Ml 14, Appi. Environ. Microbiol. 56: 2056–2064.Google Scholar
  182. Palleroni, N. J., 1984, Pseudomonas, in: Bergey’s Manual of Systematic Bateriology, Volume 1 (N. R. Krieg, ed.), Williams and Wilkins, Baltimore, pp. 141–199.Google Scholar
  183. Palleroni, N. J., Doudoroff, M., Stanier, R. Y., Solanes, R. E., and Mandel, M., 1970, Taxonomy of the aerobic pseudomonads: The properties of the Pseudomonas stutzeri group, J. Gen. Microbiol. 60: 215–231.PubMedGoogle Scholar
  184. Pandey, A., Bringel, F., and Meyer, J. M., 1994, Iron requirement and search for siderophores in lactic acid bacteria, Appl. Microbiol. Biotechnol. 40: 735–739.Google Scholar
  185. Parke, J. L., Rand, R. E., Joy, A. E., and King, E. B., 1991, Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or P. fluorescens to seed, Plant Dis. 75: 987–992.Google Scholar
  186. Pennington, J. E., Reynolds, H. Y., and Carbone, P. P., 1973, Pseudomonas pneumonia: A retrospective study of 36 cases, Am J. Med. 55: 155–160.PubMedGoogle Scholar
  187. Persmark, M., Frejd, T., and Mattiasson, B., 1990, Purification, characterization, and structure of pseudobactin 589A, a siderophore from a plant growth promoting Pseudomonas, Biochemistry 29: 7348–7356.PubMedGoogle Scholar
  188. Poole, K., Young, L., and Neshat, S., 1990, Enterobactin-mediated iron transport in Pseudomonas aeruginosa, J. Bacteriol. 172: 6991–6996.PubMedGoogle Scholar
  189. Poole, K., Neshat, S., and Heinrichs, D., 1991, Pyoverdine-mediated iron transport in Pseudomonas aeruginosa: Involvement of a high-molecular-mass outer membrane protein, FEMS Microbiol. Lett. 78: 1–6.Google Scholar
  190. Poole, K., Heinrichs, D. E., and Neshat, S., 1993a, Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: Regulation by iron and possible involvement in the secretion of the siderophore pyoverdine, Mol. Microbiol. 10: 529–544.PubMedGoogle Scholar
  191. Poole, K., Krebes, K., McNally, C., and Neshat, S., 1993b, Multiple antibiotic resistance in Pseudomonas aeruginosa: Evidence for involvement of an efflux operon, J. Bacteriol. 175: 7363–7372.PubMedGoogle Scholar
  192. Poole, K., Neshat, S., Krebes, K., and Heinrichs, D. E., 1993c, Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa, J. Bacteriol. 175: 4597–4604.PubMedGoogle Scholar
  193. Poppe, K., Taraz, K., and Budzikiewicz, H., 1987, Pyoverdine-type siderophores from Pseudomonas fluorescens, Tetrahedron 43: 2261–2272.Google Scholar
  194. Prince, R. W., Storey, D. G., Vasil, A. I., and Vasil, M. L., 1991, Regulation of toxA and regA by the Escherichia coli fur gene and identification of a Fur homologue in Pseudomonas aeruginosa PA 103 and PAO1, Mol. Microbiol. 5: 2823–2831.PubMedGoogle Scholar
  195. Prince, R. W., Cox, C. D., and Vasil, M. L., 1993, Coordinate regulation of siderophore and exotoxin A production: Molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J. Bacteriol. 175: 2589–2598.PubMedGoogle Scholar
  196. Raaijmakers, J. M., Bitter, W., Punte, H. L. M., Bakker, P. A. H. M., Weisbeek, P. J., and Schippers, B., 1994, Siderophore receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments, Appl. Environ. Microbiol. 60: 1184–1190.PubMedGoogle Scholar
  197. Raaijmakers, J. M., van der Sluis, I., Koster, M., Bakker, P. A. H. M., Weisbeek, P. J., and Schippers, B., 1995, Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp., Can. J. Microbiol. 41: 126–135.Google Scholar
  198. Reissbrodt, R., Rabsch, W., Chapeaurouge, A., Jung, G., and Winkelmann, G., 1990, Isolation and identification of ferrioxamine G and E in Hafnia alvei, Biol. Metals 3: 54–60.Google Scholar
  199. Rombel, L. T., and Lamont, I., 1992, DNA homology between siderophore genes from fluorescent pseudomonads, J. Gen. Microbiol. 138: 181–187.PubMedGoogle Scholar
  200. Royt, P., 1988, Isolation of a membrane-associated iron chelator from Pseudomonas aeruginosa, Biochim. Biophys. Acta 939: 493–502.PubMedGoogle Scholar
  201. Schröder, H., Adam, J., Taraz, K., and Budzikiewicz, H., 1995, Dihydropyoverdin sulfonic acids-Intermediates in the biogenesis?, Z. Naturforsch. 50c: 616–621.Google Scholar
  202. Schroeter, S., 1870, Über durch Bakterien gebildete Pigmente, Cohn’s Beitr. Biol. Pflanzen 1: 109–126.Google Scholar
  203. Schwyn, B., and Neilands, J. B., 1987, Universal chemical assay for the detection and determination of siderophores, Anal. Biochem. 160: 47–56.PubMedGoogle Scholar
  204. Screen, J., Moya, E., Blagbrough, I. S., and Smith, A. W., 1995, Iron uptake in Pseudomonas aeruginosa mediated by N-(2,3-dihydroxybenzoyl)-L-serine and 2,3-dihydroxybenzoic acid, FEMS Microbiol. Lett. 127: 145–149.PubMedGoogle Scholar
  205. Seinsche, D., Taraz, K., and Budzikiewicz, H., 1993, Neue pyoverdin-siderophore aus Pseudomonas putida C, J. Prakt. Chem. 335: 157–168.Google Scholar
  206. Serino, L., Reimmann, C., Baur, H., Beyeler, M., Visca, P., and Haas, D., 1995, Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa, Mol. Gen. Genet. 249: 217–228.PubMedGoogle Scholar
  207. Sexton, R., Gill, P. R., Callanan, M. J., O’Sullivan, D. J., Dowling, D. N., and O’Gara, F., 1995, Iron-responsive gene expression in Pseudomonas fluorescens Ml 14: Cloning and characterization of a transcription-activating factor, PbrA, Mol. Microbiol. 15: 297–306.PubMedGoogle Scholar
  208. Shand, G. H., Anwar, H., Kadurugamuwa, J., Brown, M. R., Silverman, S. H., and Melling, J., 1985, In vivo evidence that bacteria in urinary tract infection grow under iron-restricted conditions, Infect. Immun. 48: 35–39.PubMedGoogle Scholar
  209. Smith, A. W., Hirst, P. H., Hughes, K., Gensberg, K., and Govan, J. R. W., 1992, The pyocin Sa receptor of Pseudomonas aeruginosa is associated with ferripyoverdin uptake, J. Bacteriol. 174: 4847–4849.PubMedGoogle Scholar
  210. Smith, A. W., Poyner, D. R., Hughes, H. K., and Lambert, P. A., 1994, Siderophore activity of myo-inositol hexakisphosphate in Pseudomonas aeruginosa, J. Bacteriol. 176: 3455–3459.PubMedGoogle Scholar
  211. Sokol, P. A., 1986, Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia, J. Clin. Microbiol. 23: 560–562.PubMedGoogle Scholar
  212. Sokol, P. A., and Woods, D. E., 1983, Demonstration of an iron-siderophore-binding protein in the outer membrane of Pseudomonas aeruginosa, Infect. Immun. 40: 665–669.PubMedGoogle Scholar
  213. Sokol, P. A., Lewis, C. J., and Dennis, J. J., 1992, Isolation of a novel siderophore from Pseudomonas cepacia, J. Med. Microbiol. 36: 184–189.PubMedGoogle Scholar
  214. Sriyosachati, S., and Cox, C. D., 1986, Siderophore-mediated iron acquisition from transferrin by Pseudomonas aeruginosa, Infect. Immun. 52: 885–891.PubMedGoogle Scholar
  215. Stephan, H., Freund, S., Beck, W., Jung, G., Meyer, J. M., and Winkelmann, G., 1993a, Ornibactins-a new family of siderophores from Pseudomonas, Biometals 6: 93–100.PubMedGoogle Scholar
  216. Stephan, H., Freund, S., Meyer, J. M., Winkelmann, G., and Jung, G., 1993b, Structure elucidation of the gallium-ornibactin complex by 2D-NMR spectroscopy, Liebigs Ann. Chem. 1993: 43–48.Google Scholar
  217. Stewart, G. J., and Sinigalliano, C. D., 1989, Detection and characterization of natural transformation in the marine bacterium Pseudomonas stutzeri strain ZoBell, Arch. Microbiol. 152: 520–526.Google Scholar
  218. Stieritz, D. D., and Holder, I. A., 1975, Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: Description of a burned mouse model, J. Infect. Dis. 131: 668–691.Google Scholar
  219. Stintzi, A., 1993, Etude de la voie de biosynthèse de la pyoverdine de Pseudomonas aeruginosa PAO1, Diplôme d’Etudes Approfondies, Université de Strasbourg, France.Google Scholar
  220. Stintzi, A., Cornelis, P., Hohnadel, D., Meyer, J. M., Dean, C., Poole, K., Kourambas, S., and Krishnapillai, V., 1996, Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa, Microbiology 142: 1181–1190.PubMedGoogle Scholar
  221. Stoll, A., Brack, A., and Renz, J., 1951, Nocardamin, ein neues antibioticum aus einer Nocardia. Schweiz. Z. Path. Bakteriol. 14: 225–233.Google Scholar
  222. Tabacchioni, S., Bevivino, A., Chiarini, L., Visca, P., and Del Gallo, M., 1993, Characteristic of two rhizosphere isolates of Pseudomonas cepacia and their potential plant-growth-promoting activity, Microb. Releases 2: 161–168.Google Scholar
  223. Tabacchioni, S., Visca, P., Chiarini, L., Bevivino, A., Di Serio, C., Fancelli, S., and Fani, R., 1995, Molecular characterization of rhizosphere and clinical isolates of Burkholderia cepacia, Res. Microbiol. 146: 531–542.PubMedGoogle Scholar
  224. Tappe, R., Taraz, K., Budzikiewicz, H., Meyer, J. M., and Lefevre, J. F., 1993, Structure elucidation of a pyoverdin produced by Pseudomonas aeruginosa ATCC 27853, J. Prakt. Chem. 335: 83–87.Google Scholar
  225. Taraz, K., Seinsche, D., and Budzikiewicz, H., 1991a, Pseudobactin-and pseudobactin A-Varianten: Neue peptidsidorephore vom pyoverdin-typ aus Pseudomonas fluorescens “E2”, Z. Naturforsch. 46c: 522–526.Google Scholar
  226. Taraz, K., Tappe, R., Schröder, H., Hohlneicher, U., Gwose, I., Budzikiewicz, H., Mohn, G., and Lefèvre, J. F., 1991b, Ferribactins-the biogenetic precursors of pyoverdins, Z. Naturforsch. 46c: 527–533.Google Scholar
  227. Taylor, P. C., and Kalamatianos, C. C., 1994, Pseudomonas cepacia in the sputum of cystic fibrosis patients, Pathology 26: 315–317.PubMedGoogle Scholar
  228. Teintze, M., and Leong, J., 1981, Structure of pseudobactin A, a second siderophore from plant growth promoting Pseudomonas B10, Biochemistry 20: 6457–6462.PubMedGoogle Scholar
  229. Teintze, M., Hossain, M. B., Barnes, C. L., Leong, J., and van der Helm, D., 1981, Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas, Biochemistry 20: 6446–6457.PubMedGoogle Scholar
  230. Torres, L., Perez-Ortin, J. E., Tordera, V., and Beitran, J. P., 1986, Isolation and characterization of an (FeIII)-chelating compound produced by Pseudomonas syringae, Appl. Environ. Microbiol. 52: 157–160.PubMedGoogle Scholar
  231. Tsuda, M., Miyazaki, H., and Nakazawa, T., 1995, Genetic and physical mapping of genes involved in pyoverdin production in Pseudomonas aeruginosa PAO, J. Bacteriol. 177: 423–431.PubMedGoogle Scholar
  232. Turfitt, G. E., 1936, Bacteriological and biochemical relationships in the pyocyaneus-fluorescens group. I. The chromogenic function in relation to classification, Biochem. J. 30: 1323–1328.PubMedGoogle Scholar
  233. Turfitt, G. E., 1937, Bacteriological and biochemical relationships in the pyocyaneus-fluorescens group. II. Investigation on the green fluorescent pigment, Biochem. J. 31: 212–218.PubMedGoogle Scholar
  234. Turfreijer, A., Wibaut, J. P., and Boltjes, T. Y. K., 1938, The green fluorescent pigment of Pseudomonas fluorescens, Rec. Trav. Chim. Pays Bas 57: 1397–1404.Google Scholar
  235. Urakami, T., Ito-Yoshida, C., Araki, H., Kijima, T., Suruki, K.-I., and Komagata, K., 1994, Transfer of Pseudomonas piantarii and Pseudomonas glúmae to Burkholderia spp. and description of Burkholderia vandii sp. nov., Int. J. Syst. Bacteriol. 44: 235–245.Google Scholar
  236. van der Hofstad, G. A. J. M., Marrug, J. D., Verjans, G. M. G. M., and Weisbeek, P. J., 1986, Characterization and structural analysis of the siderophore produced by the PGPR Pseudomonas putida strain WCS358, in: Iron, Siderophores, and Plant Diseases (T. R. Swinburne, ed.), Plenum Press, New York, pp. 71–75.Google Scholar
  237. Venturi, V., Ottevanger, C., Leong, J., and Weisbeek, P. J., 1993, Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: Homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa, Mol. Microbiol. 10: 63–73.PubMedGoogle Scholar
  238. Venturi, V., Wolfs, K., Leong, J., and Weisbeek, P. J., 1994, Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity, Mol. Gen. Genet. 245: 126–132.PubMedGoogle Scholar
  239. Venturi, V., Weisbeek, P. J., and Koster, M., 1995a, Gene regulation of siderophore-medi-ated iron acquisition in Pseudomonas: Not only the Fur repressor, Mol. Microbiol. 17: 603–610.PubMedGoogle Scholar
  240. Venturi, V., Ottevanger, C., Bracke, M., and Weisbeek, P. J., 1995b, Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: Involvement of a transcriptional activator and of the Fur protein, Mol. Microbiol. 15: 1081–1093.PubMedGoogle Scholar
  241. Visca, P., Serino, P., and Orsi, N., 1992a, Isolation and characterization of Pseudomonas aeruginosa mutants blocked in the synthesis of pyoverdin, J. Bacteriol. 174: 5727–5731.PubMedGoogle Scholar
  242. Visca, P., Colotti, G., Serino, L., Verzili, D., Orsi, N., and Chiancone, E., 1992b, Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes, Appl. Environ. Microbiol. 58: 2886–2893.PubMedGoogle Scholar
  243. Visca, P., Ciervo, A., Sanfilippo, V., and Orsi, N., 1993, Iron-regulated salicylate synthesis by Pseudomonas spp, J. Gen. Microbiol. 139: 1995–2001.PubMedGoogle Scholar
  244. Visca, P., Ciervo, A., and Orsi, N., 1994, Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N 5-oxygenase in Pseudomonas aeruginosa, J. Bacteriol. 176: 1128–1140.PubMedGoogle Scholar
  245. Waring, W. S., and Werkman, C. H., 1942, Growth of bacteria in an iron-free medium, Arch. Biochem. 1:303–310.Google Scholar
  246. Weinberg, E. D., 1978, Iron and infection, Microbiol. Rev. 42: 45–66.PubMedGoogle Scholar
  247. Weinberg, E. D., 1993, The iron-withholding defense system, ASM News 59: 559–562.Google Scholar
  248. Wiebe, C., and Winkelmann, G., 1975, Kinetics studies on the specificity of chelate iron uptake in Aspergillus, J. Bacteriol. 123: 837–842.PubMedGoogle Scholar
  249. Williams, P., Morton, D. I., Towner, K.J., Stevenson, P., and Griffiths, E., 1990, Utilization of enterobactin and other exogenous iron sources by H. parainfluenzae, and H. paraprophilus, J. Gen. Microbiol. 136: 2343–2350.PubMedGoogle Scholar
  250. Winkler, S., Ockels, W., Budzikiewicz, H., Korth, H., and Pulverer, G., 1986, 2-hydroxy-4-methoxy-5-methylpyridin-N-oxid, ein Al3+ bindender metabolit von Pseudomonas cepacia, Z. Naturforsch. 41c: 807–808.Google Scholar
  251. Winkelmann, G., 1991, Handbook of Microbiol Iron Chelates, CRC Press, Boca Raton, Florida, USA.Google Scholar
  252. Wolz, C., Hohloch, K., Ocaktan, A., Poole, K., Evans, R. W., Rochel, N., Albrecht-Gary, A. M., Abdallah, M. A., and Döring, G., 1994, Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa, Infect. Immun. 62: 4021–4027.PubMedGoogle Scholar
  253. Xiao, R., and Kisaalita, W. S., 1995, Purification of pyoverdines of Pseudomonas fluorescens 2-79 by copper-chelate chromatography, Appl. Environ. Microbiol. 61: 3769–3774.PubMedGoogle Scholar
  254. Xu, G.-W., and Gross, D. C., 1988, Physical and functional analyses of the syrA and syrB genes involved in syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol 170: 5680–5688.PubMedGoogle Scholar
  255. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, L., Hotta, H., Hashimoto, Y., Ezaki, T., and Arakawa, M., 1992, Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes, 1981) comb, nov., Microbiol. Immunol. 36: 1251–1275.PubMedGoogle Scholar
  256. Yamada, Y., Seki, N., Kitahara, T., Takahashi, M., and Matsui, M., 1970, Structure and synthesis of aeruginoic acid[2-(o-hydroxypheyl)-4-thiazolecarboxylic acid], Agric. Biol. Chem. 34: 780–783.Google Scholar
  257. Yamano, Y., Nishikawa, T., and Komatsu, Y., 1994, Ferric iron transport system of Pseudomonas aeruginosa PAO1 that functions as the uptake pathway of a novel catechol-substituted cephalosporin, S-9096, Appl. Microbiol. Biotechnol. 40: 892–897.Google Scholar
  258. Yang, C.-C., and Leong, J., 1984, Structure of pseudobactin 7SR1, a siderophore from a plant-deleterious Pseudomonas. Biochemistry 23: 3534–3540.PubMedGoogle Scholar
  259. Yang, H., Chaowagul, W., and Sokol, P. A., 1991, Siderophore production by Pseudomonas pseudomallaei, Infect. Immun. 59: 776–780.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jean-Marie Meyer
    • 1
  • Alain Stintzi
    • 1
  1. 1.Laboratoire de Microbiologie et de Génétique, Unité de Recherche Associée au Centre National de la Recherche Scientifique No. 1481Université Louis-PasteurStrasbourgFrance

Personalised recommendations