CD14 is Expressed by Subsets of Murine Dendritic Cells and Upregulated by Lipopolysaccharide

  • Karsten Mahnke
  • Eva Becher
  • Paola Ricciardi-Castagnoli
  • Thomas A. Luger
  • Thomas Schwarz
  • Stephan GrabbeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 417)


The CD14 surface molecule is predominantly expressed by cells of myeloid origin and regarded as a specific marker for macrophages (Mø). Thus, in human mononuclear cell preparations, CD14 expression is a widely used parameter to distinguish Mø from dendritic cells (DC). Since a murine homologue of CD14 was recently identified, this study investigated expression of CD14 by murine Mø and DC. Flow cytometry with a monoclonal antibody directed against murine CD14 revealed that bone marrow-derived DC express CD14 to various extents during differentiation. Functionally, CD14high and CD14low DC did not differ significantly in their capacity to present alloantigen, protein antigen or immunogenic peptide. Furthermore, surface expression of CD14 could be modulated by interleukin (IL)-4 and LPS. Incubation of bone marrow-derived DC with IL-4 (100 U/ml) resulted in downregulation of CD14 surface expression, whereas exposure of BmDC to LPS (1 µg/ml) led to upregulation of CD14. After blockage of CD14 molecules by incubation of DC with anti-CD14 antibodies, downregulation of LPS triggered IL-1 release could be detected. In addition, other Mø markers such as CD11b, F4/80, BM8, and ER-TR9, are also expressed on DC. Therefore, we conclude that CD14, like other Mø markers, is expressed on murine DC during maturation. Thus, Mø and DC cannot be distinguished by flow cytometry using these markers. Moreover, CD14 may be involved in mediating LPS-induced activation of murine DC.


Dendritic Cell Surface Expression Bone Marrow Culture Mature Dendritic Cell Complete RPMI Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Todd, R.F., Nadler, L.M., Schlossman, S.F. (1981) Antigens on human monocytes identified by monoclonal antibodies. J. Immunol. 126, 1435–1442.PubMedGoogle Scholar
  2. 2.
    Ball, E.D., Graziano, R.F., Shen, L., Fanger, M.W. (1982) Monoclonal antibodies to novel myeloid antigens reveal human neutrophil heterogeneity. Proc. Natl. Acad. Sci. USA 79, 5374–5377.PubMedCrossRefGoogle Scholar
  3. 3.
    Kielian, T.L., Blecha, F. (1995) CD14 and other recognition molecules for lipopolysaccharide: a review. Immunopharmacology 29, 187–205.PubMedCrossRefGoogle Scholar
  4. 4.
    Wright, S.D. (1991) CD14 and immune response to lipopolysaccharide. Science (Wash. DC). 252, 1321–1325.CrossRefGoogle Scholar
  5. 5.
    Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., Mathison, J.C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science (Wash. DC) 249, 1431–1434.CrossRefGoogle Scholar
  6. 6.
    Matsura, K., Ishida, T., Setoguchi, M., Higuchi, Y., Akizuki, S., Yamamoto, S. (1994) Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. J. Exp. Med. 179, 1671–1676.CrossRefGoogle Scholar
  7. 7.
    Ferrero, E., Hsieh, C.L., Francke, U., Goyert, S.M. (1990) CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. J. Immunol. 145, 331–336.PubMedGoogle Scholar
  8. 8.
    Steinman, R.M., Witmer-Pack, M., Inaba, K. (1993) Dendritic cells: antigen presentation, accessory function and clinical relevance. Adv. Exp. Med. Biol. 329, 1–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Inaba, K., Inaba, M., Deguchi, M., Hagi, K., Yasumizu, R., Ikehara, S., Muramatsu, S., Steinman, R.M. (1993) Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc Natl Acad Sci USA 90, 3038–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Peters, J.H., Gieseler, R., Thiele, B., Steinbach, F. (1996) Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol. Today 17, 273–278.PubMedCrossRefGoogle Scholar
  11. 11.
    Caux, C., Vanbervliet, B., Massacrier, C., Dezutter Dambuyant, C., de Saint Vis, B., Jacquet, C., Yoneda, K., Imamura, S., Schmitt, D., Banchereau, J. (1996) CD34’ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF plus TNFa. J. Exp. Med 184, 695–706.PubMedCrossRefGoogle Scholar
  12. 12.
    Paglia, P., Girolomoni, G., Robbiati, F., Granucci, F., Ricciardi-Castagnoli, R. (1993) Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo. J. Exp. Med. 178, 1903–10.CrossRefGoogle Scholar
  13. 13.
    Granucci, F., Girolomoni, G., Lutz, M.B., Foti, M., Marconi, G., Gnocchi, R, Nolli, L., Ricciardi Castagnoli, P. (1994) Modulation of cytokine expression in mouse dendritic cell clones. Eur. J. Immunol 24, 2522–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Xu, S., Ariizumi, K., Caceres, D.G., Edelbaum, D., Hashimoto, K., Bergstresser, P.R., Takashima, A. (1995) Successive generation of antigen-presenting, dendritic cell lines from murine epidermis. J Immunol 154, 2697–705.PubMedGoogle Scholar
  15. 15.
    Scheicher, C., Mehlig, M., Zecher, R., Reske, K. (1992) Dendritic cells from bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony stimulating factor. J. Immunol. Meth. 154, 153–264.CrossRefGoogle Scholar
  16. 16.
    Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S., Steinman, R. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony stimulating factor. J. Exp. Med. 176, 1693–1702.PubMedCrossRefGoogle Scholar
  17. 17.
    S. Grabbe, K. Steinbrink, M. Steinert, T.A. Luger, T. Schwarz. 1995. Removal of the majority of epidermal Langerhans cells by topical or systemic steroid application enhances the effector phase of murine contact hypersensitivity. J. Immunol. 155: 4207–4217.PubMedGoogle Scholar
  18. 18.
    Ruppert, J., Peters, J.H. (1991) Accessory cell function during monocyte/macrophage differentiation: relation to interleukin-1 (IL-1 beta) production and release. EurJ Cell Bio1 55, 352–61.Google Scholar
  19. 19.
    Romani, N., Lenz, A., Glassel, H., Stossel, H., Stanzl, U., Majdic, O., Fritsch, R, Schuler, G. (1989) Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J. Invest. Dermatol. 93, 600–609.PubMedCrossRefGoogle Scholar
  20. 20.
    Sallusto, F., Lanzavecchia, A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down-regulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–18.PubMedCrossRefGoogle Scholar
  21. 21.
    Steinman, R.M. (1991) The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296.PubMedCrossRefGoogle Scholar
  22. 22.
    Greame-Cook, F., Bhan, A.K., Harris, N.L. (1993) Immunohistochemical characterization of intraepithelial and subepithelial mononuclear cells of the upper airways. Am. J. Pathol. 143, 1416–1422.Google Scholar
  23. 23.
    O“Doherty, U., M. Peng, S. Gezelter, W. J. Swiggard, M. Betjes, N. Bhardwaj, and R. M. Steinman. (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82, 487–493.Google Scholar
  24. 24.
    Thomas, R., and R. E. Lipsky (1994) Human peripheral blood dendritic cell subsets. Isolation and characterisation of precursor and mature antigen-presenting cells. J. Immunol. 153, 4016–4027.PubMedGoogle Scholar
  25. 25.
    Zhou, L.J., Tedder, T.F. (1996) CD14* blood monocytes can differentiate into functionally mature CD83’ dendritic cells. Proc. Natl. Acad. Sci. USA. 93, 2588–92PubMedCrossRefGoogle Scholar
  26. 26.
    Ruppert, J., Friedrichs, D., Xu, H., Peters, J.H. (1991) IL-4 decreases the expression of monocyte differentiation marker CDI4, paralleled by an increasing accessory potency. Immunobiology 182, 449–464.PubMedCrossRefGoogle Scholar
  27. 27.
    Bazil, V., Strominger, J.L. (1991) Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J. Immunol. 147, 1567–1571.PubMedGoogle Scholar
  28. 28.
    Roake, J.A., Rao, A.S., Morris, P.J., Larsen, C.P., Hankins, D.F., Austyn, J.M. (1995) Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J. Exp. Med. 181, 2237–2247.PubMedCrossRefGoogle Scholar
  29. 29.
    Couturier, C., Jahns, G., Kazatchine, M., Haefner-Cavaillon, N. (1992) Membrane molecules which trigger the production of interleukin-I and tumor necrosis factor-a by lipopolysaccharide-stimulated human monocytes. Eur J. Immunol. 22, 1461–1466.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Karsten Mahnke
    • 1
  • Eva Becher
    • 1
  • Paola Ricciardi-Castagnoli
    • 2
  • Thomas A. Luger
    • 1
  • Thomas Schwarz
    • 1
  • Stephan Grabbe
    • 1
    Email author
  1. 1.Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin Department of DermatologyUniversity of MünsterGermany
  2. 2.CNR Center of CytopharmacologyUniversity of MilanMilanItaly

Personalised recommendations