Vertical Transport Studied by Sub-Picosecond Four-Wave Mixing Experiments

  • J. Feldmann
  • G. von Plessen
  • T. Meier
  • P. Thomas
  • E. O. Göbel
  • K. W. Goossen
  • D. A. B. Miller
  • J. E. Cunningham
Part of the NATO ASI Series book series (NSSB, volume 330)


Since the realization of semiconductor heterostructures vertical transport of electrically injected carriers has been one of the most interesting topics in semiconductor physics.1,2 Precise engineering of semiconductor layers and thus electronic energy levels allows the tailoring of transport properties over a wide range and has even led to the invention of semiconductor devices relying on ballistic electron transport.1,3 In addition, negative differential resistance (NDR) can be realized by using tunneling diodes containing double-barrier heterostructures4 or a superlattice structure.5,6 Actually, the proposal of Esaki and Tsu5 to use electronic Bloch oscillations in the miniband of a semiconductor superlattice to realize NDR marked the starting point for the physics and applications of semiconductor heterostructures.


Negative Differential Resistance Multiple Quantum Well Tunneling Time Superlattice Structure Bloch Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Weisbuch and B. Vinter, ‘Quantum Semiconductor Structures (Fundamentals and Applications)’, Academic Press, San Diego (1991).Google Scholar
  2. 2.
    ‘Physics of Quantum Electron Devices’, F. Capasso, ed., Springer-Verlag, Berlin (1990).Google Scholar
  3. 3.
    M. Heiblum and M.V. Fischetti, ‘Ballistic Electron Transport in Hot Electron Transistors’, in: ‘Physics of Quantum Electron Devices’, F. Capasso, ed., Springer-Verlag, Berlin (1990).Google Scholar
  4. 4.
    T.C.L.G. Sollner, W.D. Goodhue, P.E. Tannenwald, C.D. Parker, and D.D. Peck, Appl. Phys. Lett. 43:588 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    L. Esaki and R. Tsu, IBM J. Dev. 14:61 (1970).CrossRefGoogle Scholar
  6. 6.
    A. Sibille, J.F. Palmier, H. Wang, and F. Mollot, Phys. Rev. Lett. 64:52 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Masumoto, S. Tarucha, and H. Okamato, Phys. Rev. B33:5961 (1986).ADSGoogle Scholar
  8. 8.
    M. Tsuchiya, T. Matsusue, and H. Sakaki, Phys. Rev. Lett. 59:2356 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    D.Y. Oberli, J. Shah, T.C. Damen, C.W. Tu, T.Y. Chang, D.A.B. Miller, J.E. Henry, R.F. Kopf, N. Sauer, and A.E. DiGiovanni, Phys. Rev. B40:3028 (1989).ADSGoogle Scholar
  10. 10.
    M.G.W. Alexander, W.W. Rühle, R. Sauer, and W.T. Tsang, Appl. Phys. Lett. 55:885 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    T. Matsusue, M. Tsuchiya, J.N. Schulman, and H. Sakaki, Phys. Rev. B42:5719 (1990).ADSGoogle Scholar
  12. 12.
    H.T. Grahn, H. Schneider, W.W. Rühle, K. von Klitzing, and K. Ploog, Phys. Rev. Lett. 64:2426 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    R.J. Manning, P.J. Bradley, A. Miller, J.S. Roberts, P. Mistry, and M. Pate, Electron. Lett. 24:854 (1988).CrossRefGoogle Scholar
  14. 14.
    G. Livescu, D.A.B. Miller, T. Sizer, D.J. Burrows, J.E. Cunningham, A.C. Gossard, and J.H. English, Appl. Phys. Lett. 54:748 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Fox, D.A.B. Miller, G. Livescu, J.E. Cunningham, and W.Y. Jan, IEEE J. Quantum Electron. 27:2281 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    J. Feldmann, K.W. Goossen, D.A.B. Miller, A.M. Fox, J.E. Cunningham, and W.Y. Jan, Appl. Phys. Lett. 59:66 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    G. Cohen and I. Bar-Joseph, Phys. Rev. B46:9857 (1992).ADSGoogle Scholar
  18. 18.
    A. Miller, C.B. Park, and P. Li Kam Wa, Appl. Phys. Lett. 60:97 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Cavailles, D.A.B. Miller, J.E. Cunningham, P. Li Kam Wa, and A. Miller, IEEE J. Quantum Electron. 28:2486 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    For a recent review, see D.A.B. Miller, Opt. and Quantum Electron. 22:61 (1990).CrossRefGoogle Scholar
  21. 21.
    K.W. Goossen, J.E. Cunningham, and W.Y. Jan, Appl. Phys. Lett. 57:2582 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    K.W. Goossen, J.E. Cunningham, and W.Y. Jan, Appl. Phys. Lett. 59:3622 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    K. Leo, J. Shah, E.O. Göbel, J.P. Gordon, and S. Schmitt-Rink, Semicond. Sci. Technol. 7:B394 (1992).CrossRefGoogle Scholar
  24. 24.
    J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B46:7252 (1992).ADSGoogle Scholar
  25. 25.
    J. Feldmann, in: ‘Advances in Solid State Physics’, U. Rössler, ed., Vieweg, Braunschweig (1992).Google Scholar
  26. 26.
    K. Leo, P.H. Bolivar, F. Brüggemann, R. Schwedler, and K. Köhler, Solid State Commun. 84:943 (1992).ADSCrossRefGoogle Scholar
  27. 27.
    G. von Plessen, J. Feldmann, E.O. Göbel, K.W. Goossen, D.A.B. Miller, and J.E. Cunningham, Appl. Phys. Lett., in press.Google Scholar
  28. 28.
    H.G. Roskos, M.C. Nuss, J. Shah, K. Leo, D.A.B. Miller, A.M. Fox, S. Schmitt-Rink, and K. Köhler, Phys. Rev. Lett. 68:2216 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    C. Waschke, H.G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Phys. Rev. Lett. 70:3319 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, and C.A. Burrus, Phys. Rev. B32:1043 (1985).ADSGoogle Scholar
  31. 31.
    A. Larsson, P.A. Andrekson, S.T. Eng, and A. Yariv, IEEE J. Quantum Electron. 24:787 (1988).ADSCrossRefGoogle Scholar
  32. 32.
    P.J. Price, Appl. Phys. Lett. 62:289 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    J. Shah, in: ‘Optics of Semiconductor Nanostructures’, F. Henneberger, S. Schmitt-Rink, and E.O. Göbel, eds., Akademie-Verlag, Berlin (1993).Google Scholar
  34. 34.
    J.E. Avron, Annals of Physics 143:33 (1982).ADSCrossRefGoogle Scholar
  35. 35.
    F. Bloch, Z. Phys. 52:555 (1928).ADSzbMATHGoogle Scholar
  36. 36.
    C. Kittel, in: ‘Quantum Theory of Solids’, Wiley, New York (1963).Google Scholar
  37. 37.
    J. Zak, in: ’solid State Physics’, H. Ehrenreich, F. Seitz, and D. Turnbull, eds., Academic, New York (1972).Google Scholar
  38. 38.
    A. Nenciu and G. Nenciu, Phys. Lett. 78:101 (1980).CrossRefGoogle Scholar
  39. 39.
    J.B. Krieger and G.J. Iafrate, Phys. Rev. B33:5494 (1986).ADSGoogle Scholar
  40. 40.
    V.W. Houston, Phys. Rev. 57:184 (1940).MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    C. Zener, Proc. R. Soc. A145:523 (1934).ADSGoogle Scholar
  42. 42.
    P. Roblin and M.W. Muller, Semicond. Sci. Technol. 1:218 (1986).ADSCrossRefGoogle Scholar
  43. 43.
    G. Nenciu, Rev. Mod. Phys. 63:91 (1991).ADSCrossRefGoogle Scholar
  44. 44.
    W. Franz, Z. Naturforschg. 13a:484 (1958).ADSGoogle Scholar
  45. 45.
    L.V. Keldysh, Sov. Phys. JETP 34:788 (1958).Google Scholar
  46. 46.
    G.H. Wannier, Phys. Rev. B117:432 (1960).MathSciNetADSCrossRefGoogle Scholar
  47. G.H. Wannier, Rev. Mod. Phys. 34:645 (1962).MathSciNetADSCrossRefGoogle Scholar
  48. 47.
    J. Bleuse, G. Bastard, and P. Voisin, Phys. Rev. Lett. 60, 220 (1988).ADSCrossRefGoogle Scholar
  49. 48.
    E.E. Mendez, F. Agullo-Rueda, and J.M. Hong, Phys. Rev. Lett. 60:2426 (1988).ADSCrossRefGoogle Scholar
  50. 49.
    P. Voisin, J. Bleuse, C. Bouche, S. Gaillard, C. Alibert, and A. Regreny, Phys. Rev. Lett. 61:1639 (1988).ADSCrossRefGoogle Scholar
  51. 50.
    I. Bar-Joseph, J.M. Kuo, R.F. Kopf, D.A.B. Miller, and D.S. Chemla, Appl. Phys. Lett. 55:340 (1989).ADSCrossRefGoogle Scholar
  52. 51.
    H. Schneider, K. Fujiwara, H.T. Grahn, K. von Klitzing, and K. Ploog, Appl. Phys. Lett. 56:605 (1990).ADSCrossRefGoogle Scholar
  53. 52.
    A.M. Fox, D.A.B. Miller, J.E. Cunningham, W.Y. Jan, C.Y.P. Chao, and S.L. Chuang, Phys. Rev. B46:15365 (1992).ADSGoogle Scholar
  54. 53.
    E.E. Mendez and G. Bastard, Physics Today, 34 (June 1993).Google Scholar
  55. 54.
    F. Beltram, F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, and A.Y. Cho, Phys. Rev. Lett. 64:3167 (1990).ADSCrossRefGoogle Scholar
  56. 55.
    D.E. Aspnes and A.A. Studna, Phys. Rev. B7:4605 (1973).ADSGoogle Scholar
  57. 56.
    C. Coriasso, D. Campi, C. Cacciatore, C. Alibert, S. Gaillard, B. Lambert, and A. Regreny, Europhys. Lett. 16:591 (1991).ADSCrossRefGoogle Scholar
  58. 57.
    J.A. Kash, R.G. Ulbrich, and J.C. Tsang, Solid State Electron. 32:1277 (1989).ADSCrossRefGoogle Scholar
  59. 58.
    R. Tsu and G. Döhler, Phys. Rev. B12:680 (1975).ADSGoogle Scholar
  60. 59.
    R. Ferreira and G. Bastard, Surf. Sci. 229:424 (1990).ADSCrossRefGoogle Scholar
  61. 60.
    S.M. Zakharov and E.A. Manykin, Izv. Akad. Nauk SSSR 37:2171 (1973).Google Scholar
  62. 61.
    G. von Plessen and P. Thomas, Phys. Rev. B45:9185 (1992).ADSGoogle Scholar
  63. 62.
    L. Allen and J.H. Eberly, in: ‘Optical Resonance and Two-Level Systems’, Dover Publications, New York (1975).Google Scholar
  64. 63.
    L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C.W. Tu, Phys. Rev. B34:9027 (1986).ADSGoogle Scholar
  65. 64.
    A.M. Bouchard and M. Luban, Phys. Rev. B47:6815 (1993).ADSGoogle Scholar
  66. 65.
    M.M. Dignam and J.E. Sipe, Phys. Rev. B43:4097 (1991).ADSGoogle Scholar
  67. 66.
    M. Dignam, J.E. Sipe, and J. Shah, submitted for publication.Google Scholar
  68. 67.
    G. von Plessen, T. Meier, J. Feldmann, E.O. Göbel, P. Thomas, K. Goossen, D.A.B. Miller, and J.E. Cunningham, submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Feldmann
    • 1
  • G. von Plessen
    • 1
  • T. Meier
    • 1
  • P. Thomas
    • 1
  • E. O. Göbel
    • 1
  • K. W. Goossen
    • 2
  • D. A. B. Miller
    • 2
  • J. E. Cunningham
    • 2
  1. 1.Department of Physics and Materials Sciences CenterPhilipps-University of MarburgMarburgGermany
  2. 2.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations