Advertisement

Excitation in Ion-Atom Collisions

  • Uwe Wille
Chapter
Part of the Perspectives on Individual Differences book series (PIDF)

Abstract

The subject of electronic excitation in ion-atom collisions has a longstanding history and still continues to be one of the most active fields of research in atomic physics. Any attempt to give in the present chapter a complete survey of this subject would be a hopeless task. Accordingly, the selection of the material discussed here has been guided solely by the author’s personal interests and by the desire to address, to a certain extent, topics that bear a direct relation to the title of this volume, that is, coherence in atomic collision physics. Strictly speaking, the wave-mechanical nature of atomic physics entails any collision process to be at least partially coherent. In most situations, however, this coherence is not directly reflected in the observed features of the collision. Our aim therefore is to emphasize those cases in which coherence properties of the collision are explicitly revealed, e.g., through interference effects due to the (coherent) superposition of contributions to the excitation amplitude from different excitation mechanisms. Following the author’s inclination, a major part of the specific examples considered deals with inner-shell processes in heavy-ion-atom collisions.

Keywords

Impact Parameter Internuclear Distance Rydberg State Collision System Rotational Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Madison and E. Merzbacher, in Atomic Inner-Shell Processes edited by B. Crasemann (Academic, New York, 1975), Vol. I, pp. 1–72.Google Scholar
  2. 2.
    P. Richard, in Atomic Inner-Shell Processes, edited by B. Crasemann (Academic, New York, 1975), Vol. I, pp. 73–158.CrossRefGoogle Scholar
  3. 3.
    U. Wille and R. Hippler, Mechanisms of Inner-Shell Vacancy Production in Slow Ion-Atom Collisions, Phys. Rep.132, 129–260 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    J. S. Briggs, The Excitation of Inner Shells in Slow Atomic Collisions, Rep. Prog. Phys.39, 217–289 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    G. B. Schmid, Transformation Theory and Translational Factors in Inelastic Atomic Collisions, Phys. Rev.A 15, 1459–1468 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    G. Ciocchetti, A. Molinari, and R. Malvano, A Method to Determine the Lifetime of a Nuclear State by Measuring the K-Shell Ionization Probability, Nuovo Cimento29, 1262–1274 (1963).CrossRefGoogle Scholar
  7. 7.
    P. A. Amundsen, On the Role of Dipole Transitions in the Semiclassical Approximation for K-Shell Ionization, J. Phys. B: At. Mol. Phys.11, 3197–3220 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    M. Kleber and K. Unterseer, Dynamical Treatment of Binding, Polarization and Recoil in Asymmetric Ion-Atom Collisions, Z Phys.A 292, 311–318 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    F. Rösel, D. Trautmann, and G. Baur, Recoil Effects in Atomic Inner Shell Ionization, Nucl. Instrum. Methods192, 43–52 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    W. Fritsch, Atomic Orbital Expansion Description for Slow Ion-Atom Collisions: A Curved-Line Trajectory Study, J. Phys. B: At. Mol. Phys.15, L389–L393 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    W. Fritsch and C. D. Lin, in Electronic and Atomic Collisions, edited by J. Eichler, I. V. Hertel, and N. Stolterfoht (North-Holland, Amsterdam, 1984), pp. 331–342.Google Scholar
  12. 12.
    D. G. M. Anderson, M. J. Antal, and M. B. Mcelroy, The Triple-Center Expansion for Charge Exchange in Atomic Scattering Theory, J. Phys. B: At. Mol. Phys.7, L118–L121 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    T. G. Winter and C. D. Lin, Triple-Center Treatment of Ionization in p-H Collisions, Phys. Rev.A 29, 3071–3077 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    I. M. Cheshire, D. F. Gallaher, and A. J. Taylor, Coupled-State Calculations of Proton-Hydrogen Scattering with a Pseudo-State Expansion, J. Phys. B: At. Mol. Phys.3, 813–832 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    W. Fritsch and C. D. Lin, Close-Coupling Calculations for Inelastic Processes in Intermediate Energy Ion-Atom Collisions, J. Phys. B: At. Mol. Phys.15, 1255–1268 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    H. Nakamura and M. Namiki, Semiclassical Theory of Rotationally Induced Non-adiabatic Transitions, Phys. Rev.A 24, 2963–2974 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    H. Nakamura, Dynamical-State Representation and Nonadiabatic Electronic Transitions in Atomic Collisions, Phys. Rev.A 26, 3125–3136 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    S. B. Schneiderman and A. Russek, Velocity-Dependent Orbitals in Proton-on-Hydrogen-Atom Collisions, Phys. Rev.181, 311–321 (1969).ADSCrossRefGoogle Scholar
  19. 19.
    J. S. Briggs, Perturbed United-Atom Description of Direct Ionization in Slow Heavy Ion-Atom Collisions, J. Phys. B: At. Mol. Phys.8, L485–L488 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    M. Kimura and C. D. Lin, Unified Treatment of Slow Atom-Atom and Ion-Atom Collisions, Phys. Rev.A 31, 590–592 (1985).ADSCrossRefGoogle Scholar
  21. 21.
    M. Kimura and C. D. Lin, Charge Transfer and Excitation Processes in p-He Collisions Studied Using a Unified Atomic-Orbital-Molecular-Orbital Matching Method, Phys. Rev.A 34, 176–184 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    T. G. Winter and N. F. Lane, “A-Matrix” Approach to Electron Transfer in α-H Collisions, Phys. Rev.A 31, 2698–2701 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    J. Bang and J. M. Hansteen, Coulomb Deflection Effects on Ionization and Pair-Production Phenomena, Mat. Fys. Medd. Dan. Vid. Selsk.31(13), 1–43 (1959).Google Scholar
  24. 24.
    H. Schmidt-Böcking, K. E. Stiebing, W. Schadt, N. Löchter, G. Gruber, S. Kelbch, and K. Bethge, Trajectory, Binding and Relativistic Effects in the K-Shell Ionization Process Investigated by Particle-Photon Coincidences, Nucl Instrum. Methods192, 71–77 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    D. Trautmann, F. Rösel, and G. Baur, Accurate Calculation of Inner-Shell Ionization, Nucl. Instrum. Methods214, 21–27 (1983).CrossRefGoogle Scholar
  26. 26.
    L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Møller, K. Elsener, K.-G. Rensfelt, and E. Uggerhøj, Single and Double Ionization of Helium by Fast Antiproton and Proton Impact, Phys. Rev. Lett.57, 2147–2150 (1986).ADSCrossRefGoogle Scholar
  27. 27.
    W. Jitschin, this volume, Chapter 6.Google Scholar
  28. 28.
    J. U. Andersen, E. Laegsgaard, M. Lund, and C. D. Moak, Z1-Scaling for Impact-Parameter Dependence of Inner-Shell Ionization by Heavy Ions, Nucl. Instrum. Methods132, 507–515 (1976).ADSCrossRefGoogle Scholar
  29. 29.
    J. U. Andersen, E. Laegsgaard, and M. Lund, Impact-Parameter Dependence of K-Shell Ionization, Nucl. Instrum. Methods192, 79–101 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    M. Kleber and J. Zwiegel, Variational Method for Electron Excitation in Ion-Atom Collisions, Z Phys.A 280, 137–142 (1977).ADSCrossRefGoogle Scholar
  31. 31.
    K. Unterseer and M. Kleber, Dynamics of Inner-Shell Electrons in Ion-Atom Collisions, Nucl. Instrum. Methods192, 35–41 (1982).ADSCrossRefGoogle Scholar
  32. 32.
    A. Jakob, D. Trautmann, F. Rösel, and G. Baur, Wave Function Effects in Inner-Shell Ionization, Nucl. Instrum. Methods232 [B4], 218–226 (1984).CrossRefGoogle Scholar
  33. 33.
    J. Seidel, S. Röhl, R. Lorek, S. Huchler, and M. Dost, K-Shell Ionization by 16O and 32S Ions: Reduced-Velocity Dependence of the Binding Effect, Phys. Rev.A 32, 2142–2149 (1985).ADSCrossRefGoogle Scholar
  34. 34.
    L. Sarkadi and T. Mukoyama, Higher Order Processes in L-Shell Ionization, Nucl. Instrum. Methods232 [B4], 296–302 (1984).CrossRefGoogle Scholar
  35. 35.
    L. Sarkadi, L 3-Subshell Alignment Calculations in the Second-Order Bora Approximation for Light-and Heavy-Ion Impact on Au, J. Phys. B: At. Mol. Phys.19, 2519–2530 (1986).ADSCrossRefGoogle Scholar
  36. 36.
    L. Sarkadi, Coupled-State Analysis of the Heavy-Ion-Induced L 3-Subshell Alignment, J. Phys. B: At. Mol. Phys.19, L755–L759 (1986).ADSCrossRefGoogle Scholar
  37. 37.
    S. Zehendner, G. B. Baptista, R. Dörner, E. Justiniano, J. Konrad, H. Schmidt-Böcking, and R. Schuch, Impact Parameter Dependence of the L-Subshell Ionization Probabilities and of the L 3-Subshell Alignment Tensor Components in 4 MeV p-Sm Collisions, Z. Phys. D At. Mol. Clusters4, 243–247 (1987).CrossRefGoogle Scholar
  38. 38.
    K. Dexheimer, J. Ullrich, K. E. Stiebing, W. Schadt, S. Kelbch, C. Kelbch, R. Schuch, S. Zehendner, and H. Schmidt-Böcking, Experimental Evidence for Vacancy Sharing between L Subshells in Very Asymmetric Ion-Atom Collisions, J. Phys. B: At. Mol. Phys.19, 3083–3090 (1986).ADSCrossRefGoogle Scholar
  39. 39.
    H. Schmidt-Böcking, J. Ullrich, R. Dörner, K. Dexheimer, S. Kelbch, V. Dangendorf, R. Schuch, S. Zehendner, S. Hagmann, and G. B. Baptista, L-Subshell Ionization Probabilities in Very Asymmetric Ion-Atom Collisions, Nucl. Instrum. Methods B 24/25, 64–68 (1987)ADSCrossRefGoogle Scholar
  40. 40.
    W. E. Meyerhof and K. Taulbjerg, K-Shell Ionization in Heavy-Ion Collisions, Ann. Rev. Nucl. Sci.27, 279–332 (1977).ADSCrossRefGoogle Scholar
  41. 41.
    K. Taulbjerg, J. S. Briggs, and J. Vaaben, Inner-Shell Excitation in Heteronuclear Collisions III. A Scaling Law for Differential and Total Cross Sections for K-Shell Excitation, J. Phys. B: At. Mol. Phys.9, 1351–1371 (1976).ADSCrossRefGoogle Scholar
  42. 42.
    N. Luz, S. Sackmann, and H. O. Lutz, Impact-Parameter Dependence of K-Shell Excitation in Slow Ion-Atom Collisions, J. Phys. B: At. Mol. Phys.12, 1973–1993 (1979).ADSCrossRefGoogle Scholar
  43. 43.
    R. Frekers and H. Schulze, private communication (1986).Google Scholar
  44. 44.
    B. Thies, B. Fricke, W.-D. Sepp, and H. Härtung, New Calculations of P(b) Curves for 1sσ Excitation in Low-Z (Z ≤ 10) Ion-Atom Scattering, J. Phys. B: At. Mol. Phys.19, L617–L621 (1986).CrossRefGoogle Scholar
  45. 45.
    R. Shanker, R. Bilau, R. Hippler, U. Wille, and H. O. Lutz, Impact Parameter Dependence of Ar L-Shell Excitation in Slow Ar-Ar Collisions, J. Phys. B: At. Mol. Phys.14, 997–1007 (1981).ADSCrossRefGoogle Scholar
  46. 46.
    R. Shanker, R. Hippler, U. Wille, R. Bilau, and H. O. Lutz, 3dσ Excitation in Slow Ne-Ar Collisions, Z. Phys. A Atoms Nuclei313, 281–288 (1983).ADSCrossRefGoogle Scholar
  47. 47.
    R. Bilau, W. R. Mcmurray, U. Wille, R. Shanker, R. Hippler, and H. O. Lutz, 3dσ Excitation in Slow Ar-Kr Collisions, Z Phys. D At. Mol. Clusters1, 39–46 (1986).CrossRefGoogle Scholar
  48. 48.
    G. Presser, J. Stähler, R. Werner, and U. Wille, Impact Parameter Dependence of L-Shell Excitation in 17 to 40 MeV Ag + Ag and Ag + Cs Collisions, J. Phys. B: At. Mol. Phys.16, 197–214 (1983).ADSCrossRefGoogle Scholar
  49. 49.
    E. Morenzoni, M. Nessi, P. Bürgy, Ch. Stoller, and W. Wölfli, Impact Parameter Dependence of L-and K-Shell Excitation in I-Ag Collisions, Z. Phys. A At. Nuclei311, 7–17 (1983).ADSCrossRefGoogle Scholar
  50. 50.
    R. Shanker, R. Hippler, U. Wille, R. Bilau, and H. O. Lutz, Evidence for Rotationally Induced 4fσ Excitation in Slow Kr-Xe and Kr-Kr Collisions, J. Phys. B: At. Mol. Phys.15, L495–L500 (1982).ADSCrossRefGoogle Scholar
  51. 51.
    R. Shanker, U. Wille, R. Bilau, R. Hippler, W. R. Mcmurray, and H. O. Lutz, 4fσ Excitation in Slow Kr-Kr and Kr-Xe Collisions, J. Phys. B: At. Mol. Phys.17, 1353–1371 (1984).ADSCrossRefGoogle Scholar
  52. 52.
    R. Frekers, H. Schulze, U. Wille, and B. Cleff, Impact Parameter Dependence of L-Shell Vacancy Production in Slow Kr-Kr and Xe-Xe Collisions, Z Phys. D At. Mol. Clusters6, 131–144 (1987).CrossRefGoogle Scholar
  53. 53.
    A. Niehaus, in Atomic Inner-Shell Physics, edited by B. Crasemann (Plenum, New York, 1985), pp. 377–416.CrossRefGoogle Scholar
  54. 54.
    P. H. Mokler, D. H. H. Hoffmann, W. A. Schönfeldt, D. Maor, W. E. Meyerhof, and Z. Stachura, Atomic Collision Studies at Moderate Projectile Velocities Using Highly Charged, Decelerated Heavy Ions from the GSI-Unilac, Nucl Instrum. Methods232 [B4], 34–39 (1984).CrossRefGoogle Scholar
  55. 55.
    R. Schuch, H. Ingwersen, E. Justiniano, H. Schmidt-Böcking, M. Schulz, and F. Ziegler, Interference Effects in K Vacancy Transfer of Hydrogen-Like S Ions Colliding with Ar, J. Phys. B: At Mol. Phys.17, 2319–2338 (1984).ADSCrossRefGoogle Scholar
  56. 56.
    W. Lichten, Resonant Charge Exchange in Atomic Collisions. II. Further Applications and Extensions to the Quasi-Resonant Case, Phys. Rev.139, A27–A34 (1965).ADSCrossRefGoogle Scholar
  57. 57.
    S. Hagmann, C. L. Cocke, J. R. Mcdonald, P. Richard, H. Schmidt-Böcking, and R. Schuch, Quasiresonant Charge Transfer in Inner-Shell Excitation: Impact Parameter Dependence of K-Vacancy Creation in Fq+ → Ne Collisions, Phys. Rev.A 25, 1918–1929 (1982).ADSCrossRefGoogle Scholar
  58. 58.
    N. Stolterfoht, Model Calculations of Charge Exchange between K Shells in Near-Symmetric Ion-Atom Collisions, J. Phys. B: At. Mol. Phys.16, 2385–2397 (1986).ADSCrossRefGoogle Scholar
  59. 59.
    N. Stolterfoht, in Progress in Atomic Spectroscopy, Part D, edited by H. J. Beyer and H. Kleinpoppen (Plenum, New York, 1987), pp. 415–476.CrossRefGoogle Scholar
  60. 60.
    N. Grün, private communication to R. Schuch et al. (as cited in Ref. 55).Google Scholar
  61. 61.
    W. Fritsch and C. D. Lin, Close-Coupling Study of K-Shell Vacancy Production in Near-Symmetric Collisions, Phys. Rev.A 31, 1164–1167 (1985).ADSCrossRefGoogle Scholar
  62. 62.
    S. Hagmann, C. L. Cocke, P. Richard, A. Skutlartz, S. Kelbch, H. Schmidt-Böcking, and R. Schuch, in Electronic and Atomic Collisions, edited by J. Eichler, I. V. Hertel, and N. Stolterfoht (North-Holland, Amsterdam, 1984), pp. 385–392.Google Scholar
  63. 63.
    M. Schulz, E. Justiniano, J. Konrad, R. Schuch, and A. Salin, K-Shell to K- Shell Charge Transfer in Collisions of Bare, Decelerated S Ions with Ar, J. Phys. B: At. Mol. Phys.20, 2057–2073 (1987).ADSCrossRefGoogle Scholar
  64. 64.
    R. Anholt, X-Rays from Quasimolecules, Rev. Mod. Phys.57, 995–1053 (1985).ADSCrossRefGoogle Scholar
  65. 65.
    W. Fritsch and U. Wille, Theory of Collision Broadening in Molecular-Orbital X-Ray Spectra, Jpn. J. Appl. Phys. Suppl.17-2, 387–392 (1978).ADSCrossRefGoogle Scholar
  66. 66.
    W. Fritsch and U. Wille, On the Theory of Molecular-Orbital X-Rays, J. Phys. B: At. Mol. Phys.12, L335–L340 (1979).ADSCrossRefGoogle Scholar
  67. 67.
    A. Z. Devdariani, U. N. Ostroskii, and A. Niehaus, Analytical Formulae for Spectral Shapes Arising from Emission during Atom-Atom Collisions, J. Phys. B: At. Mol. Phys.18, L161–L166 (1985)ADSCrossRefGoogle Scholar
  68. 68.
    I. Tserruya, R. Schuch, H. Schmidt-Böcking, J. Barrette, Wang Da-Hai, B. M. Johnson, K. W. Jones, and M. Meron, Interference Effects in the Quasimolecular K X-Ray Production Probability for 10 MeV Cl16+-Ar Collisions, Phys. Rev. Lett. 50, 30–33 (1983).ADSCrossRefGoogle Scholar
  69. 69.
    R. Schuch, H. Schmidt-Böcking, I. Tserruya, B. M. Johnson, K. W. Jones, and M. Meron, X-Ray Spectroscopy of Cl-Ar Quasi-Molecular Orbitals from 1sσ-2pπ Transitions, Z. Phys. A At. Nuclei320, 185–189 (1985).ADSCrossRefGoogle Scholar
  70. 70.
    R. Schuch, R. Hoffmann, B. M. Johnson, K. W. Jones, M. Meron, H. Schmidt-Böcking, and I. Tserruya, Quasimolecular X-Ray Spectroscopy for Slow Cl16+-Ar Collisions, Phys. Rev. A 37 (1988).Google Scholar
  71. 71.
    D. Liesen, A. N. Zinoviev, and F. W. Saris, Oscillations in Coincident Molecular-Orbital Auger Spectra Emitted in 450-keV Kr+4-Kr Collisions, Phys. Rev. Lett.47, 1392–1395 (1981).ADSCrossRefGoogle Scholar
  72. 72.
    V. V. Afrosimov, G. G. Meskhi, N. N. Tsarev, and A. P. Shergin, Auger Spectroscopy of Quasimolecules, Zh. Eksp. Teor. Fiz.84, 454–465 (1983) [Sov. Phys. JETP57, 263-269 (1983)].ADSGoogle Scholar
  73. 73.
    A. P. Shergin, R. Stötzel, Z. Roller, R. Bilau, and H. O. Lutz, Impact-Energy Dependence of Quasimolecular Auger Emission in Kr-Kr Collisions, Phys. Rev.A 34, 4490–4492 (1986).ADSCrossRefGoogle Scholar
  74. 74.
    G. Ciocchetti and A. Molinari, K Electron Shell Ionization and Nuclear Reactions, Nuovo Cimento40B, 69–86 (1965).ADSCrossRefGoogle Scholar
  75. 75.
    W. E. Meyerhof, in Electronic and Atomic Collisions, edited by J. Eichler, I. V. Hertel, and N. Stolterfoht (North-Holland, Amsterdam, 1984), pp. 31–49.Google Scholar
  76. 76.
    W. E. Meyerhof and J.-F. Chemin, Nuclear Reaction Effects on Atomic Inner-Shell Ionization, Adv. At. Mol. Phys.20, 173–239 (1985).ADSCrossRefGoogle Scholar
  77. 77.
    R. Anholt, in Atomic Inner-Shell Physics, edited by B. Crasemann (Plenum, New York, 1985), pp. 581–625.CrossRefGoogle Scholar
  78. 78.
    J. S. Blair, P. Dyer, K. A. Snover, and T. A. Trainor, Nuclear “Time-Delay” and X-Ray-Proton Coincidences near a Nuclear Scattering Resonance, Phys. Rev. Lett.41, 1712–1715 (1978).ADSCrossRefGoogle Scholar
  79. 79.
    W. Duinker, J. van Eck, and A. Niehaus, Experimental Evidence for the Influence of Inner-Shell Ionization on Resonant Nuclear Scattering, Phys. Rev. Lett.45, 2102–2105 (1980).ADSCrossRefGoogle Scholar
  80. 80.
    J. F. Chemin, R. Anholt, Ch. Stoller, W. E. Meyerhof, and P. A. Amundsen, Measurement of 88Sr K-Shell Ionization Probability across the Nuclear Elastic-Scattering Resonance at 5060 keV, Phys. Rev.A 24, 1218–1222 (1981).ADSCrossRefGoogle Scholar
  81. 81.
    J. F. Chemin, W. E. Meyerhof, R. Anholt, J. D. Molitoris, and Ch. Stoller, Measurement of the K-Shell Ionization Probability across a Wide Resonance: 88Sr (p, p0) at 6.06 MeV, Phys. Rev. A 26, 1239–1242 (1982).ADSCrossRefGoogle Scholar
  82. 82.
    M. Dost, R. Lorek, S. Röhl, J. Seidel, and W. Koenig, K-Shell Ionization Probability in Elastic Proton Scattering on 138Ba through an f7/2 Isobaric-Analog Resonance, Phys. Rev. A 32, 2077–2087 (1985).ADSCrossRefGoogle Scholar
  83. 83.
    D. W. Spooner, Ch. Stoller, J.-F. Chemin, W. E. Meyerhof, J.-N. Scheurer, and X.-Y. Xu, Large Resonance Effect in K- Shell Ionization Probability in Elastic Proton Backscattering on 138Ba, Phys. Rev. Lett.58, 341–344 (1987).ADSCrossRefGoogle Scholar
  84. 84.
    J. N. Scheurer, O. K. Baker, and W. E. Meyerhof, Large Angle Scattering and Nuclear Resonance Effect in Electron Capture in H+-C and H+-N Collisions, J. Phys. B: At. Mol. Phys.18, L85–L89 (1985).ADSCrossRefGoogle Scholar
  85. 85.
    E. Horsdal, B. Jensen, and K. O. Nielsen, Experimental Study of Charge Transfer near a Nuclear-Scattering Resonance, Phys. Rev. Lett.57, 675–678 (1986).ADSCrossRefGoogle Scholar
  86. 86.
    R. Anholt, Electronic 1sσ Vacancy Production in Deep-Inelastic Nuclear Reactions, Phys. Lett.88B, 262–264 (1979).ADSCrossRefGoogle Scholar
  87. 87.
    U. Müller, J. Reinhardt, G. Soff, B. Müller, and W. Greiner, K-Vacancy Production in Deep-Inelastic Nuclear Reactions, Z Phys. A At. Nuclei297, 357–358 (1980).ADSCrossRefGoogle Scholar
  88. 88.
    Ch. Stoller, J. F. Chemin, R. Anholt, W. E. Meyerhof, and W. Wölfli, X-Ray Study of the Deep Inelastic Reactions 1160 MeV 136Xe + Pb and 136Xe + 232Th, Z Phys. A At. Nuclei310, 9–17 (1983).ADSCrossRefGoogle Scholar
  89. 89.
    Ch. Stoller, M. Nessi, E. Morenzoni, W. Wölfli, W. E. Meyerhof, J. D. Molitoris, E. Grosse, and Ch. Michel, Nuclear Reaction Times in the Deep-Inelastic U + U Collision Deduced from K- Shell Ionization Probabilities, Phys. Rev. Lett.53, 1329–1332 (1984).ADSCrossRefGoogle Scholar
  90. 90._J. D. Molitoris, Nuclear Time Delay Effects on K-Vacancy Production in Deep-Inelastic U + U Collisions, Ph.D. thesis, Stanford University (1986).Google Scholar
  91. 91.
    H. Backe, P. Senger, W. Bonin, E. Kankeleit, M. Krämer, R. Krieg, V. Metag, N. Trautmann, and J. B. Wilhelmy, Estimates of the Nuclear Time Delay in Dissipative U + U and U + Cm Collisions Derived from the Shape of Positron and δ-Ray Spectra, Phys. Rev. Lett.50, 1838–1841 (1983).ADSCrossRefGoogle Scholar
  92. 92.
    J. Reinhardt, B. Müller, W. Greiner, and G. Soff, Delta Electrons: An Atomic Clock for Deep-Inelastic Collisions, Z. Phys. A292, 211–212 (1979).ADSCrossRefGoogle Scholar
  93. 93.
    G. Soff, J. Reinhardt, B. Müller, and W. Greiner, Delta-Electron Emission in Deep-Inelastic Heavy-Ion Collisions, Phys. Rev. Lett.43, 1981–1984 (1979).ADSCrossRefGoogle Scholar
  94. 94.
    P. Senger, H. Backe, M. Begemann-Blaich, H. Bokemeyer, P. Glässel, D. v. Harrach, M. Klüver, W. Konen, K. Poppensieker, K. Stiebing, J. Stroth, and K. Wallenwein, Nuclear Contact Times in Dissipative Heavy Ion Collisions Measured via δ-Ray Spectroscopy, Preprint No. GSI-86-51 (1986).Google Scholar
  95. 95.
    J. Kirsch, B. Müller, and W. Greiner, MO-Radiation Interference Phenomena as a “Clock” for Nuclear Reaction Times, Z Phys. D At. Mol. Clusters1, 47–50 (1986).CrossRefGoogle Scholar
  96. 96.
    J. Kirsch, B. Müller, and W. GreinerAtomic and Molecular Physics Close to Ionization Thresholds in High Fields, edited by J. P. Connerade, J. C. Gay, and S. Liberman, J. Phys. (Paris)43, C2 (1982).Google Scholar
  97. 97.
    G. Ferrante, in Fundamental Processes in Energetic Atomic Collisions, edited by H. O. Lutz, J. S. Briggs, and H. Kleinpoppen (Plenum, New York, 1983), pp. 585–610.CrossRefGoogle Scholar
  98. 98.
    G. Ferrante, in Fundamental Processes in Atomic Collision Physics, edited by H. Kleinpoppen, J. S. Briggs, and H. O. Lutz (Plenum, New York, 1985), pp. 343–395.CrossRefGoogle Scholar
  99. 99.
    M. R. C. Mcdowell and M. Zarcone, Scattering in Strong Magnetic Fields, Adv. At. Mol. Phys.21, 255–304 (1985).ADSCrossRefGoogle Scholar
  100. 100.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Academic, New York, 1957).zbMATHCrossRefGoogle Scholar
  101. 101.
    D. Park, Relation between the Parabolic and Spherical Eigenfunctions of Hydrogen, Z. Phys.159, 155–157 (1960).ADSMathSciNetCrossRefGoogle Scholar
  102. 102.
    H. J. Andrä, in Progress in Atomic Spectroscopy, Part B, edited by W. Hanle and H. Kleinpoppen (Plenum, New York, 1979), pp. 829–953.CrossRefGoogle Scholar
  103. 103.
    E. H. Pinnington, H. G. Berry, J. Desesquelles, and J. L. Subtil, Stark Effect Modulations in He II and Li III, Nucl. Instrum. Methods110, 315–320 (1973).ADSCrossRefGoogle Scholar
  104. 104.
    C. F. Moore, W. J. Braithwaite, and D. L. Matthews, Electric Field Induced Structure in X-Ray Yields from Highly Ionized Oxygen Atoms, Phys. Lett.47A, 353–354 (1974).ADSCrossRefGoogle Scholar
  105. 105.
    P. Richard, C. L. Cocke, S. J. Czuchlewski, K. A. Jamison, R. L. Kauffman, and C. W. Woods, Observation of Stark Beats in the H-Like K X Rays of Oxygen and Fluorine, Phys. Lett.47A, 355–356 (1974).ADSCrossRefGoogle Scholar
  106. 106.
    Z. Vager, E. P. Kanter, D. Schneider, and D. S. Gemmell, Coherent Stark Levels in Beam-Foil-Excited Fast Rydberg Atoms, Phys. Rev. Lett.50, 954–957 (1983).ADSCrossRefGoogle Scholar
  107. 107.
    E. P. Kanter, D. Schneider, Z. Vager, D. S. Gemmell, B. J. Zabransky, Gu Yuan-Zhuang, P. Arcuni, P. M. Koch, D. R. Mariani, and W. Van De Water, Lonization of Fast Foil-Excited Ion Beams in Electromagnetic Fields, Phys. Rev.A 29, 583–594 (1984).ADSCrossRefGoogle Scholar
  108. 108.
    D. Schneider, W. Zeitz, R. Kowallik, G. Schiwietz, T. Schneider, N. Stolterfoht, and U. Wille, Effects of External Electric Fields on High Rydberg States Formed in Foil and Gas Interactions of 85-MeV Ne6+ Ions, Phys. Rev.A 34, 169–175 (1986).ADSCrossRefGoogle Scholar
  109. 109.
    R. Kowallik, Messungen von Quanteninterferenzen an schnellen Rydbergionen in elektrischen Feldern, Diploma thesis, Free University of Berlin (1986).Google Scholar
  110. 110.
    W. Zeitz, R. Kowallik, and D. Schneider, unpublished.Google Scholar
  111. 111.
    T. Seideman, M. Shapiro, and Z. Vager, Theory of the Coherent Decay of High-Lying Rydberg States in Beam-Foil Encounters, Phys. Rev.A 35, 87–102 (1987).ADSCrossRefGoogle Scholar
  112. 112.
    R. H. Garstang, Atoms in High Magnetic Fields, Rep. Prog. Phys.40, 105–154 (1977).ADSCrossRefGoogle Scholar
  113. 113.
    D. Moss, Magnetic Fields in Stars, Phys. Rep.140, 1–74 (1986).ADSCrossRefGoogle Scholar
  114. 114.
    S. Bivona, B. Spagnolo, and G. Ferrante, in Electronic and Atomic Collisions (Abstracts of XIII ICPEAC) edited by J. Eichler, W. Fritsch, I. V. Hertel, N. Stolterfoht, and U. Wille (North-Holland, Amsterdam, 1983), p. 692.Google Scholar
  115. 115.
    S. Bivona, B. Spagnolo, and G. Ferrante, Charge Transfer in the Presence of a Strong Magnetic Field, J. Phys. B: At. Mol. Phys.17, 1093–1106 (1984).ADSCrossRefGoogle Scholar
  116. 116.
    T. P. Grosdanov and M. R. C. Mcdowell, A Classical Trajectory Monte Carlo Study of Collisions of He2+ with H in a Strong Magnetic Field, J. Phys. B: At. Mol. Phys.18, 921–931 (1985).ADSCrossRefGoogle Scholar
  117. 117.
    S. Bivona and M. R. C. Mcdowell, Asymmetric Charge Exchange in a Strong Static Magnetic Field, J. Phys. B: At. Mol. Phys.20, 1541–1554 (1987).ADSCrossRefGoogle Scholar
  118. 118.
    U. Wille, in Fundamental Processes in Atomic Collision Physics, edited by H. Klein-poppen, J. S. Briggs, and H. O. Lutz (Plenum, New York, 1985) pp. 719–727.CrossRefGoogle Scholar
  119. 119.
    U. Wille, Vibrational and Rotational Properties of the H+ 2 Molecular Ion in a Strong Magnetic Field, J. Phys. B: At. Mol. Phys.20, L417–L422 (1987).ADSCrossRefGoogle Scholar
  120. 120.
    U. Wille, Resonant Charge Transfer in Slow H+-H Collisions in the Presence of a Strong Magnetic Field, Phys. Lett.125A, 52–56.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Uwe Wille
    • 1
  1. 1.Hahn-Meitner-InstitutBereich Kern- und StrahlenphysikBerlin 39Germany

Personalised recommendations