Conjugative Plasmids of Streptomyces

  • David A. Hopwood
  • Tobias Kieser


Genetic exchange in Streptomyces was first revealed when prototrophic recombinants were recovered from mixed cultures of pairs of auxotrophic derivatives of several wild-type strains (1, 8, 25, 63, 65). A conjugative mechanism, rather than transformation or transduction, was invoked to account for gene exchange because no recombinants were detected without prolonged physical contact of the parental strains (indeed, a period of mixed growth was needed) and because the pattern of inheritance of groups of markers was consistent only with recombination of large segments of the parental genomes (25). Plasmids were first clearly implicated in this conjugative process in the most studied strain, Streptomyces coelicolor A3(2), when certain derivatives of the wild-type isolate were found to differ in their “fertility” properties—that is, in the frequency with which they generated chromosomal recombinants when mated with various other derivatives—and this ability was inherited “infectiously” (2, 28, 72). These experiments led to the genetic definition of two conjugative plasmids—SCP1 and SCP2—that were deduced to be present in an autonomous state in the wild-type A3(2) strain and to be lost, or in the case of SCP1 sometimes chromosomally integrated, in various of its derivatives. Plasmids responsible for “fertility” (or “chromosome mobilizing ability” [Cma]) (24) were also identified genetically in some other strains, including Streptomyces rimosus (18), Streptomyces lividans (29), Streptomyces erythreus (now called Saccharopolyspora erythrea) (15),Streptomyces venezuelae (17), and Streptomyces ambofaciens (66).


Terminal Inverted Repeat Linear Plasmid Plasmid Transfer Mycobacterium Smegmatis Conjugative Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alikhanian, S. I., and Mindlin, S. Z., 1957, Recombinations in Streptomyces rimosus, Nature 180: 1208–1209.PubMedCrossRefGoogle Scholar
  2. 2.
    Bibb, M. J., and Hopwood, D. A., 1981, Genetic studies of the fertility plasmid SCP2 and its SCP2’ variants in Streptomyces coelicolor A3(2), J. Gen. Microbiol. 126: 427–442.Google Scholar
  3. 3.
    Bibb, M. J., Schottel, J. L., and Cohen, S. N., 1980, A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces, Nature 284: 526–531.PubMedCrossRefGoogle Scholar
  4. 4.
    Bibb, M. J., Ward, J. M., Kieser, T., Cohen, S. N., and Hopwood, D. A., 1981, Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans, Mol. Gen. Genet. 184: 230–240.Google Scholar
  5. 5.
    Bibb, M. J., Findlay, P. R., and Johnson, M. W, 1984, The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences, Gene 30: 157–166.PubMedCrossRefGoogle Scholar
  6. 5a.
    Bierman, M., Logan, R., O’Brien, K., Seno, E. T., and Schoner, B. E., 1992, Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp., Gene 116: 43–49.PubMedCrossRefGoogle Scholar
  7. 6.
    Boccard, F., Pernodet, J.-L., Friedmann, A., and Guérineau, M., 1988, Site-specific integration of plasmid pSAM2 in Streptomyces lividans and S. ambofaciens, Mol. Gen. Genet. 212: 432–439.Google Scholar
  8. 6a.
    Boccard, F., Smokvina, T, Pernodet, J.-L., Friedmann, A., and Guerineau, M., 1989, Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces, Plasmid 21: 59–70.PubMedCrossRefGoogle Scholar
  9. 7.
    Boccard, F., Smokvina, T., Pernodet, J.-L., Friedmann, A., and Guérineau, M., 1989, The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages, EMBO J. 8: 973–980.PubMedGoogle Scholar
  10. 8.
    Braendle, D. H., and Szybalski, W, 1959, Heterokaryotic compatibility, metabolic cooperation, and genetic recombination in Streptomyces, Ann. NY Acad. Sci. 81: 824–851.Google Scholar
  11. 9.
    Brody, H., Greener, A., and Hill, C. W, 1985, Excision and reintegration of the Escherichia coli K12 chromosomal element e14, J. Bacteriol. 161: 1112–1117.PubMedGoogle Scholar
  12. 10.
    Buttner, M. J., and Brown, N. L., 1987, Two promoters from the Streptomyces plasmid pÚ101 and their expression in Escherichia coli, Gene 51: 179–186.PubMedCrossRefGoogle Scholar
  13. 11.
    Chater, K. F., and Bruton, C. J., 1985, Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered, EMBO J. 4: 1893–1897.PubMedGoogle Scholar
  14. 12.
    Chung, S.-T., 1982, Isolation and characterization of Streptomyces fradiae plasmids which are prophage of actinophage •SF1, Gene 17: 239–246.PubMedCrossRefGoogle Scholar
  15. 13.
    Deng, Z., Kieser, T., and Hopwood, D A., 1987, Activity of a Streptomyces transcriptional terminator in Escherichia coli, Nucl. Acids Res. 15: 2665–2675.Google Scholar
  16. 14.
    Deng, Z., Kieser, T., and Hopwood, D. A., 1988, “Strong incompatibility” between derivatives of the Streptomyces multi-copy plasmid p1. 1101, Mol. Gen. Genet. 214: 286–294.Google Scholar
  17. 15.
    Dewitt, J. P., 1985, Evidence for a sex-factor in Streptomyces erythreus, J. Bacteriol. 164: 969–971.PubMedGoogle Scholar
  18. 16.
    Di Guglielmo, R., Conzelmann, C., Flett, E, and Cullum, J., 1990, J. Cellular Biochem. Suppl. 14A, Abstract CC 402, p. 124.Google Scholar
  19. 17.
    Doull, J. L., Vats, S., Chaliciopoulos, M., Stuttard, C., Wong, K., and Vining, L. C., 1986, Conjugational fertility and location of chloramphenicol biosynthesis genes on the chromosomal linkage map of Streptomyces venezuelae, J. Gen. Microbiol. 132: 1327–1338.Google Scholar
  20. 18.
    Friend, E. J., Warren, M., and Hopwood, D. A., 1978, Genetic evidence for a plasmid controlling fertility in an industrial strain of Streptomyces rimosus, J. Gen. Microbiol. 106: 201–206.Google Scholar
  21. 18a.
    Gormley, E. P., and Davies, J., 1991, Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis, J. Bacteriol. 173: 6705–6708.PubMedGoogle Scholar
  22. 19.
    Grant, S. R., Lee, S. C., Kendall, K., and Cohen,. S. N., 1989, Identification and characterization of a locus inhibiting extrachromosomal maintenance of the Streptomyces plasmid SLP1, Mol. Gen. Genet. 217: 324–331.Google Scholar
  23. 20.
    Gruss, A., and Ehrlich, S. D., 1989, The family of highly interrelated single-stranded deoxyribonucleic acid plasmids, Microbiol. Rev. 53: 231–241.Google Scholar
  24. 21.
    Guijarro, J., Santamaria, R., Schauer, A., and Losick, R., 1988, Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide, J. Bacteriol. 170: 1895–1901.PubMedGoogle Scholar
  25. 21a.
    Hanafusa, T., and Kinashi, H., 1991, The structure of an integrated copy of the giant linear plasmid SCP1 in the chromosome of Streptomyces coelicolor 2612, Mol. Gen. Genet. 231: 363–368.Google Scholar
  26. 22.
    Hardisson, C., and Manzanal, M. B., 1976, Ultrastructural studies of sporulation in Streptomyces, J. Bacteriol. 127: 1443–1454.PubMedGoogle Scholar
  27. 23.
    Hirochika, H., Nakamura, K., and Sakaguchi, K., 1984, A linear DNA plasmid from Streptomyces rochei with an inverted terminal repetition of 614 base pairs, EMBO J. 3: 761–766.PubMedGoogle Scholar
  28. 24.
    Holloway, B. W., 1979, Plasmids that mobilize bacterial chromosome, Plasmid 2: 1–19.PubMedCrossRefGoogle Scholar
  29. 25.
    Hopwood, D. A., 1959, Linkage and the mechanism of recombination in Streptomyces coelicolor, Ann. NY Acad. Sci. 81: 887–898.Google Scholar
  30. 26.
    Hopwood, D. A., and Wright, H. M., 1973, A plasmid of Streptomyces coelicolor carrying a chromosomal locus and its inter-specific transfer, J. Gen. Microbiol. 79: 331–342.Google Scholar
  31. 27.
    Hopwood, D. A., and Wright, H. M., 1976, Genetic studies on SCP1-prime strains of Streptomyces coelicolor A3(2), J. Gen. Microbiol. 95: 107–120.Google Scholar
  32. 28.
    Hopwood, D. A., Chater, K. F., Dowding, J. E., and Vivian, A., 1973, Advances in Streptomyces coelicolor genetics, Bacteriol. Rev. 37: 371–405.Google Scholar
  33. 29.
    Hopwood, D. A., Kieser, T, Wright, H. M., and Bibb, M. J., 1983, Plasmids, recombination and chromosome mapping in Streptomyces lividans 66, J. Gen. Microbiol. 129: 2257–2269.Google Scholar
  34. 30.
    Hopwood, D. A., Lydiate, D. J., Malpartida, F., and Wright, H. M., 1985, Conjugative plasmids in Streptomyces, in: Plasmids in Bacteria ( D. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), Plenum Press, New York, pp. 615–634.CrossRefGoogle Scholar
  35. 31.
    Hopwood, D. A., Kieser, T., Lydiate, D. J., and Bibb, M. J., 1986, Streptomyces plasmids: their biology and use as cloning vectors, in: The Bacteria. A Treatise on Structure and Function, Vol. IX ( S. W. Queener and L. E. Day, eds.), Academic Press, Orlando, pp. 159–229.Google Scholar
  36. 32.
    Hütter, R., and Eckhardt, T., 1988, Genetic manipulation, in: Actinomycetes in Biotechnology ( M. Goodfellow, S. T Williams, and M. Mordarski, eds.), Academic Press, London, pp. 89–184.CrossRefGoogle Scholar
  37. 33.
    Kalkus, J., Reh, M., and Schlegel, H. G., 1990, Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids, J. Gen. Microbiol. 136: 1145–1151.Google Scholar
  38. 33a.
    Kataoka, M., Seki, T., and Yoshida, T, 1991, Five genes involved in self-transmission of pSN22, a Streptomyces plasmid, J. Bacteriol. 173: 4220–4228.PubMedGoogle Scholar
  39. 33b.
    Kataoka, M., Seki, T., and Yoshida, T, 1991, Regulation and function of the Streptomyces plasmid pSN22, genes involved in pock-formation and inviability, J. Bacteriol. 173: 7975–7981.PubMedGoogle Scholar
  40. c. Kataoka, M., Kuno, N., Horiguchi, T., Seki, T, and Yoshida, T, 1993, Replication of a Streptomyces plasmid pSN22 through single-stranded intermediates, J. Bacteriol., in press.Google Scholar
  41. 34.
    Keen, C. L., Mendelovitz, S., Cohen, G., Aharonowitz, Y., and Roy, K. L., 1988, Isolation and characterization of a linear DNA plasmid from Streptomyces clavuligerus, Mol. Gen. Genet. 212: 172–176.Google Scholar
  42. 35.
    Kelemen, G H., Financsek, I., and Jerai, M., 1989, Efficient transformation of Micromonospora purpurea with pÚ702 plasmid, J. Antibiot. 42: 325–328.PubMedCrossRefGoogle Scholar
  43. 36.
    Kendall, K., and Cohen, S. N., 1987, Plasmid transfer in Streptomyces lividans: identification of a kil-kor system associated with the transfer region of pÚ101, J. Bacteriol. 169: 4177–4183.PubMedGoogle Scholar
  44. 37.
    Kendall, K., and Cohen, S. N., 1988, Complete nucleotide sequence of the Streptomyces lividans plasmid pU101 and correlation of the sequence with genetic properties, J. Bacteriol. 170: 4634–4651.PubMedGoogle Scholar
  45. 38.
    Kendall, K., and Cullum, J., 1984, Cloning and expression of an extracellular-agarase gene from Streptomyces coelicolor A3(2) in Streptomyces lividans 66, Gene 29: 315–321.PubMedCrossRefGoogle Scholar
  46. 39.
    Kendall, K., and Cullum, J., 1986, Identification of a DNA sequence associated with plasmid integration in Streptomyces coelicolor A3(2), Mol. Gen. Genet. 202: 240–245.Google Scholar
  47. 40.
    Kieser, H. M., Henderson, D. J., Chen, C. W, and Hopwood, D. A., 1989, A mutation of Streptomyces lividans that prevents intraplasmid recombination has no effect on chromosomal recombination, Mol. Gen. Genet. 220:60—M.Google Scholar
  48. 40a.
    Kieser, H. M., Kieser, T., and Hopwood, D. A., 1992, A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome, J. Bacteriol. 174: 5496–5507.PubMedGoogle Scholar
  49. 41.
    Kieser, T., Hopwood, D. A., Wright, H. M., and Thompson, C. J., 1982, pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors, Mol. Gen. Genet. 185: 223–238.Google Scholar
  50. 41a.
    Kieser, T., and Hopwood, D. A., 1991, Genetic manipulation of Streptomyces: integrating vectors and gene replacement. Meth. in Enzymol. 204: 430–458.Google Scholar
  51. 42.
    Kinashi, H., and Shimaji-Murayama, M., 1991, Physical characterization of SCP1, a giant linear plasmid from Streptomyces coelicolor, J. Bacteriol. 173: 5123–1529.Google Scholar
  52. 43.
    Kinashi, H., Shimaji, M., and Sakai, A., 1987, Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes, Nature 328: 454–456.PubMedCrossRefGoogle Scholar
  53. 43a.
    Kinashi, H., Shimaji-Murayama, M., and Hanafusa, T., 1991, Nucleotide sequence analysis of the unusually long terminal inverted repeats of a giant linear plasmid, SCP1, Plasmid 26: 123–130.PubMedCrossRefGoogle Scholar
  54. 43b.
    Kinashi, H., Shimaji-Murayama, M., and Hanafusa, T., 1992, Integration of SCP1, a giant linear plasmid, into the Streptomyces coelicolor chromosome. Gene 115: 35–41.PubMedCrossRefGoogle Scholar
  55. 44.
    Kirby, R., and Hopwood, D. A., 1977, Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2), J. Gen Microbiol 98: 239–252.PubMedCrossRefGoogle Scholar
  56. 45.
    Kirby, R., Wright, L. F, and Hopwood, D. A., 1975, Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor, Nature 254: 265–267.PubMedCrossRefGoogle Scholar
  57. 46.
    Kobayashi, T, Shimotsu, H., Horinouchi, S., Uozumi, T, and Beppu, T., 1984, Isolation and characterization of a pock-forming plasmid pTA4001 from Streptomyces lavendulae, J. Antibiot. 37: 368–375.PubMedCrossRefGoogle Scholar
  58. 47.
    Kuhstoss, S., Richardson, M. A., and Rao, R. N., 1989, Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2, J. Bacteriol. 171: 16–23.PubMedGoogle Scholar
  59. 48.
    Lee, S. C., Orner, C. A., Brasch, M. A., and Cohen, S. N., 1988, Analysis of recombination occurring at SLP1 an sites, J. Bacteriol. 170: 5806–5813.PubMedGoogle Scholar
  60. 48a.
    Lee, M. H., Pascopella, L., Jacobs, W. R., and Hatfull, G. R., 1991, Site-specific integration of mycobacteriophage L5 integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis and Bacille Calmette-Guerin. Proc. Natl. Acad. Sci. USA 88: 3111–3115.Google Scholar
  61. 49.
    Martin, J. F., and Liras, P., 1989, Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites, Annu. Rev. Microbiol. 43: 173–206.Google Scholar
  62. 49a.
    Martin, C., Mazodier, P., Mediola, M. V., Gicquel, B., Smokvina, T., Thompson, C. J., and Davies, J., 1991, Site-specific integration of the Streptomyces plasmid pSAM2 in Mycobacterium smegmatis, Molec. Microbiol. 5: 2499–2502.Google Scholar
  63. 50.
    Matsushima, P., and Baltz, R. H., 1988, Genetic transformation of Micromonospora rosaria by the Streptomyces piasmid pÚ702, J. Antibiot. 41: 583–585.PubMedCrossRefGoogle Scholar
  64. 51.
    Matsushima, P., McHenney, M. A., and Baltz, R. H., 1987, Efficient transformation of Amycolaropsis orientalis ( Nocardia orientalis) protoplasts by Streptomyces plasmids, J. Bacteriol. 169: 2298–2300.Google Scholar
  65. 52.
    Mazodier, P., Petter, R., and Thompson, C., 1989, Intergeneric conjugation between Escherichia coli and Streptomyces species, J. Bacteriol. 171: 3585–3585.Google Scholar
  66. 53.
    Mazodier, P., Thompson, C., and Boccard, F., 1990, The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes, Mol. Gen. Genet. 222: 431–434.Google Scholar
  67. 54.
    Nordstrom, K., and Austin, S. J., 1989, Mechanisms that contribute to the stable segregation of plasmids, Annu. Rev. Genet. 23: 37–69.Google Scholar
  68. 55.
    Orner, C. A., and Cohen S. N., 1984, Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site, Mol. Gen. Genet. 196: 429–438.Google Scholar
  69. 56.
    Omer, C. A., and Cohen, S. N., 1986, Structural analysis of plasmid and chromosomal loci involved in sitespecific excision and integration of the SLP1 element of Streptomyces coelicolor, J. Bacteriol. 166:999–1006. 56a. Orner, C. A., Stein, D., and Cohen, S. N., 1988, Site-specific insertion of biologically functional adventitious genes into the Streptomyces lividans chromosome, J. Bacteriol. 170: 2174–2184.Google Scholar
  70. 57.
    Pernodet, J.-L., and Guerineau, M., 1981, Isolation and physical characterization of streptomycete plasmids, Mol. Gen. Genet. 182: 53–59.Google Scholar
  71. 58.
    Pidcock, K. A., Montenecourt, B. S., and Sands, J. A., 1985, Genetic recombination and transformation in protoplasts of Thermomonospora fusca, Appl. Environment. Microbiol. 50: 693–695.Google Scholar
  72. 59.
    Pierson, L. S., and Kahn, M. L., 1987, Integration of satellite bacteriophage P4 in Escherichia coli: DNA sequences of the phage and host regions involved in site-specific recombination, J. Mol. Biol. 196: 487–496.Google Scholar
  73. 60.
    Pigac, J., Vujaklija, C., Toman, Z., Gamulin, V, and Schrempf, H., 1988, Structural instability of a bifunctional plasmid pZG1 and single-stranded DNA formation in Streptomyces, Plasmid 19: 222–230.PubMedCrossRefGoogle Scholar
  74. 61.
    Rafii, F., and Crawford, D. L., 1989, Donor/recipient interactions affecting plasmid transfer among Streptomyces species: a conjugative plasmid will mobilize nontransferable plasmids in soil, Curr. Microbiol. 19: 115–121.Google Scholar
  75. 62.
    Reiter, W-D., Palm, P., and Yeats, S., 1989, Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements, Nucl. Acids Res. 17: 1907–1914.Google Scholar
  76. 63.
    Saito, H., and Ikeda, Y., 1959, Cytogenetic studies on Streptomyces griseoflavus, Ann. NY Acad. Sci. 81: 862–878.Google Scholar
  77. 64.
    Sakaguchi, K., 1990, Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses, Microbiol. Rev. 54: 66–74.Google Scholar
  78. 65.
    Sermonti, G., and Spada-Sermonti, I., 1955, Genetic recombination in Streptomyces, Nature (London) 176: 121.CrossRefGoogle Scholar
  79. 65a.
    Shiffman, D., and Cohen, S. N., 1992, Reconstruction of a Streptomyces linear replicon from separately cloned DNA fragments—existence of a cryptic origin of circular replication within the linear plasmid, Proc. Natl. Acad. Sci. USA 89: 6129–6133.Google Scholar
  80. 66.
    Smokvina T., Francou, F, and Luzzati, M., 1988, Genetic analysis in Streptomyces ambofaciens, J. Gen. Microbiol. 134: 395–402.Google Scholar
  81. 67.
    Smokvina, T., Mazodier, P., Boccard, F, Thompson, C. J., and Guérineau, M., 1990, Construction of a series of pSAM2-based integrative vectors for use in actinomycetes, Gene 94: 53–59.PubMedCrossRefGoogle Scholar
  82. 68.
    Smokvina, T., Boccard, F., Pernodet, J.-L., Friedmann, A., and Guérineau, M., 1991, functional analysis of the Streptomyces ambofaciens elements pSAM2, Plasmid 25: 40–52.Google Scholar
  83. 69.
    Stein, D. S. and Cohen, S. N., 1990, Mutational and functional analysis of the korA and korB gene products of Streptomyces plasmid pIJ101, Mol. Gen. Genet. 222: 337–344.Google Scholar
  84. 70.
    Stein, D. S., Kendall, K. J., and Cohen, S. N., 1989, Identification and analysis of transcriptional regulatory signals for the kil and kor loci of Streptomyces plasmid pU101, J. Bacteriol. 171: 5768–5775.PubMedGoogle Scholar
  85. 71.
    Tsai, J. F.-Y., and Chen, C. W, 1989, Isolation and characterization of Streptomyces lividans mutants deficient in intraplasmid recombination, EMBO J. 8: 973–980.Google Scholar
  86. 72.
    Vivian, A., 1971, Genetic control of fertility in Streptomyces coelicolor A3(2): plasmid involvement in the interconversion of OF and IF strains, J. Gen. Microbiol. 69: 353–364.Google Scholar
  87. 73.
    Vivian, A., and Hopwood, D. A., 1973, Genetic control of fertility in Streptomyces coelicolor A3(2): new kinds of donor strains, J. Gen. Microbiol. 76: 147–162.Google Scholar
  88. 74.
    Wellington, E. M. H, Cresswell, N., and Saunders, V. A., 1990, Growth and survival of streptomycete inoculants and extent of plasmid transfer in sterile and nonsterile soil, Appl. Environment. Microbiol. 56: 1413–1419.Google Scholar
  89. 74a.
    Wu, X., and Roy, K. L., 1993, Complete nucleotide sequence of a linear plasmid from Streptomyces clavuligerus, and characterization of its RNA transcripts, J. Bacteriol. 175: 37–52.PubMedGoogle Scholar
  90. 75.
    Yamamoto, H., Maurer, K. H., and Hutchinson, C. R., 1986, Transformation of Streptomyces erythreus, J. Antibiot. 39: 1304–1313.PubMedCrossRefGoogle Scholar
  91. 76.
    Zaman, S., Richards, H., and Ward, J., 1992, Expression and characterization of the korB gene product from the Streptomyces lividans plasmid pU101 in Escherichia coli and determination of its binding site on the korB and kilB promoters, Nucl. Acids Res. 20: 3693–3700.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • David A. Hopwood
    • 1
  • Tobias Kieser
    • 1
  1. 1.John Innes InstituteJohn Innes CentreNorwichEngland

Personalised recommendations