Advances in Microbial Ecology pp 105-191

Part of the Advances in Microbial Ecology book series (AMIE, volume 15)

Do Bacterial Communities Transcend Darwinism?

  • Douglas E. Caldwell
  • Gideon M. Wolfaardt
  • Darren R. Korber
  • John R. Lawrence

Abstract

Until the development of fluorescent molecular probes and confocal laser microscopy, there were few alternatives to isolating microorganisms from their communities prior to laboratory study. Isolation was necessary to obtain a sufficient amount of homogeneous cell material for chemical analyses, yet it constrained most laboratory work to the molecular, cellular, or organismal level. However, fluorescent probes and other molecular techniques now allow the analysis of individual microorganisms without isolation (Olsen et al., 1986; Pace et al., 1986; Caldwell et al., 1992a). This affords the opportunity to perform community-level laboratory experiments that are not possible with plants and animals due to their large size. However, inconsistencies between evolutionary ecology (Mayr, 1993; Krassilov, 1994; Kauffman, 1993, 1995), ecosystem ecology (Maynard-Smith, 1991; Loehle and Pechman, 1988; Schulze and Mooney, 1993), microbial ecology (Margulis, 1990; Caldwell, 1993; Caldwell and Costerton, 1996), germ theory (Caldwell, 1995; Caldwell et al., 1997a), and information theory (Rasmussen, 1988, 1991; Rasmussen et al., 1990; Yockey, 1990, 1995; Kelly, 1994) make it difficult to formulate testable hypotheses that are relevant in understanding ecology at the community level. Consideration of communities as units of proliferation (and hence as units of evolution) requires a more generalized theory of life, amenable to the formulation of community-level hypotheses and tests.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadjian, V., and Hale, M. E., 1973, The Lichens, Academic Press, London.Google Scholar
  2. Ahring, B. K., and Westermann, P., 1987, Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria, Appl. Environ. Microbiol. 53: 429–433.PubMedGoogle Scholar
  3. Allard, A.-S., Hynning, P.-A., Remberger, M., and Neilson, A. H., 1992, Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures grown with coumarin and flavanone glycones and aglycones, Appl. Environ. Microbiol. 58: 961–968.PubMedGoogle Scholar
  4. Alldredge, A. L., and Cohen, Y., 1987, Can microscale chemical patches persist at sea? Micro-electrode study of marine snow, fecal pellets, Science 235: 689–91.PubMedGoogle Scholar
  5. Allison, D. G., and Sutherland, I. W., 1987, The role of expolysaccharides in adhesion of freshwater bacteria, J. Gen. Microbiol. 133: 1319–1327.Google Scholar
  6. Amann, R. I., Krumholz, L., and Stahl, D. A., 1990, Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology, J. Bacteriol. 172: 762–770.PubMedGoogle Scholar
  7. Amann, R. I., Springer, N., Ludwig, W., Gortz, H. D., and Schleifer, K. H., 1991, Identification and phylogeny of uncultured bacterial endosymbionts, Nature (London) 351: 161–165.Google Scholar
  8. Amann, R. I., Stromley, J., Devereux, R., Key, R., and Stahl, D. A., 1992, Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms, Appl. Environ. Microbiol. 58: 614–623.PubMedGoogle Scholar
  9. Amann, R. I., Ludwig, W., and Schleifer, K. H., 1994, Identification of uncultured bacteria: a challenging task for molecular taxonomists, ASM News 60: 360–365.Google Scholar
  10. Aoki, K., 1982, Additive polygenic formulation of Hamilton’s model of kin selection, Heredity 49: 163–170.Google Scholar
  11. Aoki, K., 1986, Stable polymorphic equilibria in a toy model of group selection, Japan. J. Genet. 61: 481–490.Google Scholar
  12. Aviles, L. 1986, Sex-ratio bias and possible group selection in the social spider, Amer. Nat. 128: 112.Google Scholar
  13. Back, J. P., and Kroll, R. G., 1991, The differential fluorescence of bacteria stained with acridine orange and the effects of heat, J. Appl. Bacteriol. 71: 51–58.PubMedGoogle Scholar
  14. Bagley, D. M., and Gossett, J. M., 1995, Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227, Appl. Environ. Microbiol. 61: 3195–3201.PubMedGoogle Scholar
  15. Batra, S. W. T., and Batra, L. R., 1967, The fungus gardens of insects, Sci. Amer. 217: 112–120.Google Scholar
  16. Beijerinck, M. W., 1889, Auxanography, a method useful in microbiological research, involving diffusion in gelatin, Archives Neerlandaises des Sciences Exactes et Naturelles Haarlem 23: 367–372.Google Scholar
  17. Beijerinck, M. W., 1901, Enrichment culture studies with urea bacteria, Centralblatt f. Bakteriologie Part 117: 33–61.Google Scholar
  18. Betts, R. P., Bankes, P., and Banks, J. G., 1989, Rapid enumerations of viable micro-organisms by staining and direct microscopy, Lett. Appl. Microbiol. 9: 199–202.Google Scholar
  19. Beurskens, J. E. M., Dekker, C. G. C., Van Den Heuvel, H., Swart, M., De Wolf, J., 1994, Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamically most favorable reactions, Environ. Sci. Technol. 28: 701–706.PubMedGoogle Scholar
  20. Bhatnagar, L., and Fathepure, B. Z., 1991, Mixed cultures in detoxification of hazardous waste, in: Mixed Cultures in Biotechnology ( J. G. Zeikus, and E. A. Johnson, eds.) McGraw-Hill, New York, pp. 293–340.Google Scholar
  21. Bochem, H. P., Schoberth, S. M., Sprey, B., and Wengler, P., 1982, Thermophilic biomethanation of acetic acid: morphology and ultrastructure of a granular consortium, Can. J. Microbiol. 28: 500–510.Google Scholar
  22. Bochner, B., 1989, “Breathprints” at the microbial level, ASM News 55:536–539.Google Scholar
  23. Boone, D. R., Johnson, R. L., and Liu, Y., 1989, Diffusion of the interspecies electron carriers Hz and formate in methanogenic ecosystems and its implications in the measurement of K0, for H2 and formate uptake, Appl. Environ. Microbiol. 55: 1735–1741.PubMedGoogle Scholar
  24. Bottomley, P. J., and Maggard, S. P., 1990, Determination of viability within serotypes of a soil population of Rhizobium leguminosarum by. trifolii, Appl. Environ. Microbiol. 56: 533–540.PubMedGoogle Scholar
  25. Bouwer, H., 1989, Transformations of xenobiotics in biofilms, in: Structure And Function Of Biofilms ( W. G. Characklis and P. H. Wilderer, eds.), John Wiley and Sons, Toronto, pp. 251–267.Google Scholar
  26. Bradshaw, D. J., McKee, A. S., and Marsh, P. D., 1989, Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro, J. Dent. Res. 68: 1298–1302.PubMedGoogle Scholar
  27. Brakenhoff, G. J., van der Voort, H. T. M., Baarslag, M. W., Mans, B., Oud, J. L., Zwart, R., and van Driel, R., 1988, Visualization and analysis techniques for three dimensional information acquired by confocal microscopy, Scanning Microsc. 2: 1831–1838.PubMedGoogle Scholar
  28. Brannan, D. K., 1995, Cosmetic preservation, J. Soc. Cosmet. Chem. 46: 199–220.Google Scholar
  29. Brayton, P. R., Tamplin, M. L., Huq, A., and Colwell, R. R., 1987, Enumeration of Vibrio cholerae 01 in Bangladesh waters by fluorescent-antibody direct viable count, Appl. nviron. Microbiol. 53: 2862–2865.Google Scholar
  30. Brefeld, O., 1881, Botanische Untersuchungen uber Schimmelpilze: Culturemethoden, Leipzig. Bremer, P. J., and Geesey, G. G., 1991, Laboratory-based model of microbiologically induced corrosion of copper, Appl. Environ. Microbiol. 57: 1956–1962.Google Scholar
  31. Brock, T. D., and Madigan, M., 1988, The Biology of Microorganisms, Prentice-Hall, New Jersey. Brown, M. J., and Lester, J. N., 1982, Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge-I, Water Res. 16: 1539–1548.Google Scholar
  32. Brown, M. R. W., Allison, D. G., and Gilbert, G., 1988, Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?, J. Antimicrob. Chemother. 22: 777–780.PubMedGoogle Scholar
  33. Brown, S. W., and Oliver, S. G., 1982, Isolation of ethanol-tolerant mutants of yeast by continuous culture selection, Eur. J. Appl. Microbiol. Biotechnol. 16: 119–122.Google Scholar
  34. Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Mikrobiol. 59: 20–31.Google Scholar
  35. Bryers, J. D., 1993, The biotechnology of interfaces, J. Appl. Bact. Symp. Suppl. 74: 98S - 109S.Google Scholar
  36. Bungay, H. R., 1995, A challenge for modelling mutualism, Binary: Computing in Microbiology. 7: 100–102.Google Scholar
  37. Busscher, H. J., Bellon-Fontaine, M.-N., Mozes, N., Van Der Mei, H. C., Sjoflema, J., Cerf, O., and Rouxhet, P. G., 1990, Deposition of Leuconostoc mesenteroides and Streptococcus thermophilus to solid substrata in a parallel plate flow cell, Biofouling 2: 55–63.Google Scholar
  38. Caldwell, D. E., 1993, The microstat: Steady-state microenvironments for subculture of steady-state consortia, communities, and microecosystems, in: Trends in Microbial Ecology ( R. Guerrero and C. Pedros-Alio, eds.), Spanish Society for Microbiology, Barcelona, pp. 123–128.Google Scholar
  39. Caldwell, D. E., 1995, Cultivation and Study of Biofilm Communities. in: Microbial Biofilms, (H. M. Lappin-Scott and J. W. Costerton, eds), Cambridge University Press, Cambridge, pp. 6479.Google Scholar
  40. Caldwell, D. E., and Costerton, J. W., 1996. Are bacterial biofilms constrained to Darwin’s concept of evolution through natural selection? Microbiologia SEM 12: 347–358.Google Scholar
  41. Caldwell, D. E., and Germida, J. J., 1985, Evaluation of difference imagery for visualizing and quantitating microbial growth, Canad. J. Microbiol. 31: 35–44.Google Scholar
  42. Caldwell, D. E., and Hirsch, P., 1973, Growth of microorganisms in two-dimensional steady-state diffusion gradients, Can. J. Microbiol. 19: 53–58.PubMedGoogle Scholar
  43. Caldwell, D. E., and Lawrence, J. R., 1986, Growth kinetics of Pseudomonas fuorescens micro-colonies within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 2: 299–312.Google Scholar
  44. Caaldwell, D. E., and Lawrence, J. R., 1988, Study of attached cells in continuous-flow slide culture, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. 1 ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 117–138.Google Scholar
  45. Caldwell, D. E., and Lawrence, J. R., 1989, Microbial growth and behavior within surface microenvironments, in: Proceedings of ISME-5 ( T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), JSS Press, Tokyo, pp. 140–145.Google Scholar
  46. Caldwell, D. E., Lai, S. H., and Tiedje, J. M., 1973, A two-dimensional steady-state diffusion gradient for ecological studies, in: Modern Methods in Microbial Ecology (Thomas Rosswall, ed.), Bull. Ecol. Res. Comm. ( Stockholm ) 17: 151–158.Google Scholar
  47. Caldwell, D. E., Caldwell, S. J., and Tiedje, J. M., 1975, An ecological study of sulfur-oxidizing bacteria from the littoral zone of a Michigan lake and a sulfur spring in Florida, Plant and Soil 43: 101–114.Google Scholar
  48. Caldwell, D. E., Brierley, J. A., and Brierley, C. L., 1985, Planetary Ecology, Van Nostrand Reinhold, New York.Google Scholar
  49. Caldwell, D. E., Korber, D. R. and Lawrence, J. R., 1992a, Confocal Laser Microscopy and Computer Image Analysis, in: Advances in Microbial Ecology Vol. 12 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 1–67.Google Scholar
  50. Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1992b, Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy, J. Microbiol. Methods 15: 249–261.Google Scholar
  51. Caldwell, D. E., Korber, D. R., and Lawrence, J. R., 1993, Analysis of Biofilm Formation Using 2-D Versus 3-D Digital Imaging, in: Microbial Cell Envelopes: Interactions and Biofilms ( L. B. Quesnel, P. Gilbert, and P. S. Handley, eds), Blackwell Scientific, Oxford, pp. 52–66S.Google Scholar
  52. Caldwell, D. E., Atuku, E., Wilkie, D. C., Wivcharuk, K. P., Karthikeyan, S., Korber, D. R., Schmid, D. R., and Wolfaardt, G. M., 1997a, Germ theory versus community theory in understanding and controlling the proliferation of biofilms, Adv. Dental Res. 11: 4–13.Google Scholar
  53. Caldwell, D. E., Wolfaardt, G. M., Korber, D. R., and Lawrence, J. R., 1997b, Cultivation of microbial consortia and communities, in: Manual of Environmental Microbiology (C. J. Hurst, G. R. Knudsen, M. J. Mclnemey, L. D. Stetzenbach, M. V. Walter, American Society of Microbiology Press, Washington, D.C., pp. 79–90.Google Scholar
  54. Characklis, W. G., 1988, Model biofilm reactors, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. I ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 155–174.Google Scholar
  55. Characklis, W. G., McFeters, G. A. and Marshall, K. C., 1990, Physicological ecology in biofilm systems, in: Biofilms ( W. G. Characklis and K. C. Marshall, eds.), J. Wiley and Sons, New York, pp. 341–393.Google Scholar
  56. Chartrain, M., and Zeikus, J. G., 1986a, Microbial ecophysiology of whey biomethanation: Intermediary metabolism of lactose degradation in continuous culture, Appl. Environ. Microbiol. 51: 180–187.PubMedGoogle Scholar
  57. Chartrain, M., and Zeikus, J. G., 1986b, Microbial ecophysiology of whey biomethanation: Characterization of bacterial trophic populations and prevalent species in continuous culture, Appl. Environ. Microbiol. 51: 188–196.PubMedGoogle Scholar
  58. Chartrain, M., L. Bhatnagar, and Zeikus, J. G. 1987, Microbial ecophysiology of whey biomethanation: Comparison of carbon transformation parameters, species composition, and starter culture performance in continuous culture, Appl. Environ. Microbiol. 53: 1147–1156.PubMedGoogle Scholar
  59. Christersson, C. E., Glantz, P-O. J., and Baier, R. E., 1988, Role of temperature and shear forces on microbial detachment, Scand. J. Dent. Res. 96: 91–98.PubMedGoogle Scholar
  60. Claasen, P. A. M., Korstee, G. J. J., Ossterveld Van Vliet, W. M., and Van Neerven, A. R. W., 1986, Colonial heterogeneity of Thiobacillus, J. Bacteriol. 168: 791–794.Google Scholar
  61. Conrad, R., T. J., Phelps, and Zeikus, J. G., 1985, Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments, Appl. Environ. Microbiol. 50: 595–601.PubMedGoogle Scholar
  62. Costerton, J. W., Geesey, G. G., and Cheng, K.-J., 1978, How bacteria stick, Sci. Am. 238: 86–95.PubMedGoogle Scholar
  63. Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D. E., Korber, D. R., and James, G. A., 1994, Biofilms: the customized microniche, J. Bacteriol. 176: 2137–2142.PubMedGoogle Scholar
  64. Daley, R. J., 1979, Direct epifluorescence enumeration of native aquatic bacteria: Uses, limitations, and comparative accuracy, in: Native Aquatic Bacteria: Enumeration, Activity, and Ecology, STP 695 ( J. W. Costerton and R. R. Colwell, eds.), American Society for Testing and Materials, New York, pp. 29–45.Google Scholar
  65. Damuth, J. 1985, Selection among species. A formulation in terms of natural functional units, Evolution 39: 1132–1146.Google Scholar
  66. Darwin, C., 1859, The Origin of Species By Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life, New American Library, New York.Google Scholar
  67. Darwin, C., 1868, The Variation of Animals and Plants Under Domestication. Vol. 2, Organe Judd, New York, p. 204.Google Scholar
  68. Dawson, K. A., Allison, M. J., and Hartman, P. A. 1980, Characteristics of anaerobic oxalate degrading enrichment cultures from the rumen, Appl. Environ. Microbiol. 40: 840–846.PubMedGoogle Scholar
  69. Beer, D., Stoodley, P., Roe, F., and Lewandowski, Z., 1994, Effect of biofilm structures on oxygen distribution and mass transport, Biotechnol. Bioeng. 43: 1131–1138.PubMedGoogle Scholar
  70. DeLong, E. F., Wickham, G. S., and Pace, N. R., 1989, Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells, Science 243: 1360–1363.PubMedGoogle Scholar
  71. Dietrich, G., and Winter, J. 1990, Anaerobic degradation of chlorophenol by an enrichment culture, Appl. Environ. Microbiol. 34: 253–258.Google Scholar
  72. Distefano, T. D., Gossett, J. M., and Zinder, S. H., 1991, Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis, Appl. Environ. Microbiol. 57: 2287–2292.PubMedGoogle Scholar
  73. Dolfing, J., and Beurskens, J. E. M., 1995, The microbial logic and environmental significance of reductive dehalogenation, Adv. Microb. Ecol. 14: 188.Google Scholar
  74. Doolittle, W. F., and Sapienza, C., 1980, Selfish genes, the phenotype paradigm, and genome evolution, Nature (London) 284: 601–603.Google Scholar
  75. Drake, J. W., 1970, The Molecular Basis of Mutation, Holden-Day, San Francisco, pp. 39–62.Google Scholar
  76. Dunbar, M. J., 1971, Higher levels of organization, the evolution of stability in marine environments: natural selection at the level of the ecosystem, in: Group Selection ( G. C. Williams, ed.), Aldine Atherton, Chicago, pp. 120–139.Google Scholar
  77. Dworkin, M., 1985, The myxobacteria, in: Developmental Biology of the Bacteria ( M. Dworkin, ed.), Benjamin/Cummings, Menlo Park, CA, pp. 105–149.Google Scholar
  78. Dworkin, M., and Kaiser, D., 1985, Cell interactions in myxobacterial growth and development, Science 230: 18–24.PubMedGoogle Scholar
  79. Emerson, D., Worden, R. M., and Breznak, J. A., 1994, A diffusion gradient chamber for studying microbial behavior and separating organisms, Appl. Environ. Microbiol. 60: 1269–1278.PubMedGoogle Scholar
  80. Emerson, R. W., 1841, The Method of Nature: An Oration Delivered Before the Society of the Adelphi In Waterville College, Maine, August 11, 1841, Books on Line, http://www cgi.cs.cmu.edu.Google Scholar
  81. Eng, R. H. K., Padberg, F. T., Smith, S. M., Tan, E. N., and Cherubin, C. E., 1991, Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria, Antimicrob. Agents Chemother. 35: 1824–1828.PubMedGoogle Scholar
  82. Evenboom, W., Van Der Does, J. Bruning, K., and Mur, L. M., 1981, A non-heterocystous mutant of Aphanizomenon flos-aquae, selected by competition in light-limited continuous culture, FEMS Microbiol. Lett. 10: 11–16.Google Scholar
  83. Fairbaim, B., 1994, History from the ecological perspective: gaia theory and the problem of cooperatives in turn-of-the-century Germany, Amer. Historic. Rev. 99: 1203–1239.Google Scholar
  84. Farrar, J. F., 1976. The lichen as an ecosystem: observation and experiment, in: Lichenology: Progress and Problems (D. H. Brown, D. L. Hawksworth, and R. H. Bailey, eds.), Academic Press, New York, pp. 19–46.Google Scholar
  85. Federle, T. W. and Pastwa, G. M., 1988, Biodegradation of surfactants in saturated subsurface sediments: a field study, Groundwater 26: 761–70.Google Scholar
  86. Federle, T. W., and Schwab, B. S., 1989, Mineralization of surfactants by microbiota of aquatic plants, Appl. Environ. Microbiol. 55: 2092–2113.PubMedGoogle Scholar
  87. Fix, A. G., 1984, Kin groups and trait groups population structure and epidemic disease, Amer. J. Phys. Anth. 65: 201–212.Google Scholar
  88. Fletcher, M., 1984, Comparative physiology of attached and free-living bacteria, in: Microbial Adhesion And Aggregation ( K. C. Marshall, ed.), Springer-Verlag, New York, pp. 223–232.Google Scholar
  89. Foster, P. L., 1993, Adaptive mutation: the uses of adversity, Annu. Rev. Microbiol. 47: 467–504.PubMedGoogle Scholar
  90. Fulthorpe, R. R., and Wyndham, R. C., 1989, Survival and activity of a 3-chlorobenzoate-catabolic genotype in a natural system, Appl. Environ. Microbiol. 55: 1584–1590.PubMedGoogle Scholar
  91. Fulthorpe, R. R., and Wyndham, R. C., 1991, Transfer and expression of the catabolic plasmic pBRC60 in wild bacterial recipients in a freshwater ecosystem, Appl. Environ. Microbiol. 57: 1546–1553.PubMedGoogle Scholar
  92. Fulthorpe, R. R., and Wyndham, R. C., 1992, Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem, Appl. Environ. Microbiol. 58: 314–325.PubMedGoogle Scholar
  93. Fulthorpe, R. R., McGowan, C., Maltseva, O. V., Holben, W. E., and Tiedje, J. M., 1995, 2, 4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes, Appl. Environ. Microbiol. 61: 3274–3281.Google Scholar
  94. Garland, J. L., and Mills, A. L., 1991, Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization, Appl. Environ. Microbiol. 57: 2351–2359.PubMedGoogle Scholar
  95. Geesey, G. G., and White, D. C., 1990, Determination of bacterial growth and activity at solid-liquid interfaces, Ann. Rev. Microbio!. 44: 579–602.Google Scholar
  96. Geesey, G. G., Mutch, R., Costerton, J. W., and Green, R. B., 1978, Sessile bacteria: an important component of the microbial population in small mountain streams, Limnol. Oceanogr. 23: 1214–1223.Google Scholar
  97. Gest, H., 1993, Bacterial growth and reproduction in nature and in the laboratory, ASM News 59: 542–543.Google Scholar
  98. Ghosal, D., You, I.-S., Chatterjee, D. K., and Chakrabarty, A. M., 1985, Microbial degradation of halogenated compounds, Science 228: 135–142.PubMedGoogle Scholar
  99. Gilbert, P., Collier, P. J., and Brown, M. R. W., 1990, Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response, Antimicrob. Agents Chemother. 34: 1856–1868.Google Scholar
  100. Goodnight, C. J., 1990a, Experimental studies of community evolution I. The ecological basis of the response to community selection, Evolution 44: 1614–1624.Google Scholar
  101. Goodnight, C. J., 1990b, Experimental studies of community evolution II. The ecological basis of the response to community selection, Evolution 44: 1625–1636.Google Scholar
  102. Goodnight, C. J., Schwartz, J. M., and Stevens, S. L., 1992, Contextual analysis of models of group selection, soft selection, hard selection, and the evolution of altruism, American Naturalist 140: 743–761.Google Scholar
  103. Goodwin, S., Conrad, R., and Zeikus, J. G., 1988, Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems, Appl. Environ. Microbiol. 54: 590–593.PubMedGoogle Scholar
  104. Gottschal, J. C., and Dijkhuizen, L., 1988, The place of continuous culture in ecological research, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. 1 ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 19–49.Google Scholar
  105. Guckert, J. B., Hood, M. A., and White, D. C., 1986, Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proporations of cyclopropyl fatty acids, Appl. Environ. Microbiol. 52: 794–801.PubMedGoogle Scholar
  106. Guede, H., 1979, Grazing by protozoa as selection factor for activated sludge bacteria, Microb. Ecol. 5: 225–238.Google Scholar
  107. Haack, S. K., Garchow, H., Odelson, D. A., Forney, L. J., and Klug, M. J. 1994, Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities, Appl. Environ. Microbiol. 60: 2483–2493.PubMedGoogle Scholar
  108. Haeckel, E., 1866, Generelle Morphologie der Organism, Reimer, Berlin.Google Scholar
  109. Haefele, D. M., and Lindow, S. E., 1987, Flagellar motility confers epiphytic fitness advantages upon Pseudomonas svringae, Appl. Environ. Microbiol. 53: 2528–2533.PubMedGoogle Scholar
  110. Hahn, D., Amann, R. I., Ludwig, W., Akkermans, A. D. L., and Schleifer, K.-H., 1992, Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides, J. Gen. Microbiol. 138: 879–887.PubMedGoogle Scholar
  111. Harder, W., and Veldkamp, H., 1971, Competition of marine phychrophilic bacteria at low temperatures, Antonie van Leeuwenhoek 37: 51–63.PubMedGoogle Scholar
  112. Harder, W., Kuenen, J. G., and Matin, A., 1977, Microbial selection in continuous culture, J. Appl. Bacteriol. 43: 1–24.PubMedGoogle Scholar
  113. Haugland, R. P., 1992, Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes Inc., Eugene, OR.Google Scholar
  114. Hawksworth, D. L., 1982, Secondary fungi in lichen symbioses: parasites, saprophytes and parasymbionts, J. Hattori Botan. Lab. 52: 357–366.Google Scholar
  115. Hawksworth, D. L., 1988, The variety of fungal-algal symbioses, their evolutionary significance and the nature of lichens, Botan. J. Linnean Soc. 96: 3–20.Google Scholar
  116. Herbert, R. A., 1988, Bidirectional compound chemostats: applications of compound diffusion-linked chemostats in microbial ecology, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. I ( J. W. T Wimpenny, ed.), CRC Press, Boca Raton, pp. 99–115.Google Scholar
  117. Herdman, M., 1977, The cyanelle: chloroplast or endosymbiotic prokaryote? FEMS Microbiol. Lett. 1: 7–12.Google Scholar
  118. Hernandez-Cruz, A., Sala, F., and Adams, P. R., 1990, Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron, Science 247: 858–862.PubMedGoogle Scholar
  119. Hickey, D. A., 1982, Selfish DNA: A sexually-transmitted nuclear parasite, Genetics 106:519–531. Hirsch, P., 1980, Some thoughts on and examples of microbial interactions in the natural environment, in: Aquatic Microbial Ecology ( R. R. Colwell and A. J. Foster, eds.), University of Maryland, College Park, pp. 36–54.Google Scholar
  120. Hirsch, P., 1984, Microcolony formation and consortia, in: Microbial Adhesion and Aggregation ( K. C. Marshall, ed.), Springer Verlag, New York, pp. 373–393.Google Scholar
  121. Hoff, K. A., 1988, Rapid and simple method for double staining of bacteria with 4’, 6-Diamidino-2phenylindole and fluorescein isothiocyanate-labeled antibodies, Appl. Environ. Microbiol. 54: 2949–2952.PubMedGoogle Scholar
  122. Holt, J. G., and Krieg, N. R., 1994, Enrichment and isolation, in: Methods for General and Molecular Bacteriology ( P. Gerhardt, ed.), American Society for Microbiology, Washington, D.C., pp. 179–204.Google Scholar
  123. James, G. A., Caldwell, D. E., and Costerton, J. W., 1993, Spatial relationships between bacterial species within biofilms, Proceedings of The CSMISIM Annual Meeting (abstract) Toronto, Canada.Google Scholar
  124. Jannasch, H. W., 1967, Enrichment of aquatic bacteria in continuous culture, Arch. Mikrobiol. 59: 165–173.PubMedGoogle Scholar
  125. Jensen, R. H., and Woolfolk, C. A., 1985, Formation of filaments by Pseudomonas putida, Appl. Environ. Microbiol. 50: 364–372.PubMedGoogle Scholar
  126. Jeon, K. W., 1972, Development of cellular dependence in infective organisms; microsurgical studies in amoebas, Science 176: 1122–1123.PubMedGoogle Scholar
  127. icon, K. W., and Ahn, T. I.. 1978, Temperature sensitivity: A cell character determined by obligate endosymbionts in amoebas. Science 202: 635–637.Google Scholar
  128. Jeon, K. W., and Jeon, M. S., 1976, Endosymbiosis in amoebae: Recently established endosymbionts have become required cytoplasmic components, J. Cell. Physiol. 89: 337–344.PubMedGoogle Scholar
  129. Jiménez, L., Breen, A., Thomas, N., Federle, T. W., and Sayler, G. S., 1991, Mineralization of linear alkylbenzene sulfonate by a four-member aerobic bacterial consortium, Appl. Environ. Microbiol. 57, 1566–1569.PubMedGoogle Scholar
  130. Jones, W. J., Guyot, J.-P., and Wolfe, R. S., 1984, Methanogenesis from sucrose by defined immobilized consortia, Appl. Environ. Microbiol. 47: 1–6.PubMedGoogle Scholar
  131. Kauffman, S., 1995, At Home In The Universe: The Search for Laws of Self-Organization and Complexity,Oxford University Press, New York.Google Scholar
  132. Kauffman, S. A., 1993, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, New York.Google Scholar
  133. Keller, E. F., and Lloyd, E. A., 1992, Keywords in Evolutionary Biology. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  134. Kelly, K., 1994, Out of Control—The New Biology of Machines, Social Systems and the Economic World, Addison-Wesley, New York.Google Scholar
  135. Kendrick, B., 1991, Fungal symbioses and evolutionary innovations, in: Symbiosis as a Source of Evolutionary Innovation ( L. Margulis and R. Fester, eds.), MIT Press, Cambridge, Massachusetts.Google Scholar
  136. Kieft, T. L., and Caldwell, D. E., 1984, Chemostat and in-situ colonization kinetics of Thermothrix thiopara on calcite and pyrite surfaces, Geomicrobiol. J. 3: 217–229.Google Scholar
  137. Kinner, N. E., Balkwill, D. L., and Bishop, P. L., 1983, Light and electron microscope studies of microorganisms growing in rotating biological contactor biofilms, Appl. Environ. Microbiol. 45: 1659–1669.PubMedGoogle Scholar
  138. Kjelleberg, S., 1984, Effects of interfaces on survival mechanisms of copiotrophic bacteria in low-nutrient habitats, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.), Wiley, New York, pp. 151–159.Google Scholar
  139. Klinger, J. M., Stowe, R. P., Obenhuber, D. C., Groves, T. O., Mishra, S. K., and Pierson, D. L., 1992, Evaluation of the Biolog automated microbial identification system, Appl. Environ. Microbiol. 58: 2089–2092.Google Scholar
  140. Koch, A. I., 1991, Diffusion: The crucial process in many aspects of the biology of bacteria, in: Advances in Microbial Ecology, Vol. 11 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 37–70.Google Scholar
  141. Koch, R., 1881, Methods for the study of pathogenic organisms, Mittheilungen aus dem Kaiserlichen Gesundheitsamte 1: 1–48.Google Scholar
  142. Koch, R., 1884, The etiology of tuberculosis, Mitthelungen aus dem Kaiserlichen Gesundheitsamte 2: 1–88.Google Scholar
  143. Korber, D. R., Lawrence, J. R., Sutton, B., and Caldwell, D. E., 1989, Effects of laminar flow velocity on the kinetics of surface recolonization by mot+ and mot- Pseudomonas fluorescens, Microb. Ecol. 18: 1–19.Google Scholar
  144. Korber, D. R., Lawrence, J. R., Zhang, L., and Caldwell, D. E., 1990, Effect of gravity on bacterial deposition and orientation in laminar flow environments, Biofouling 2: 335–50.Google Scholar
  145. Korber, D. R., Lawrence, J. R., Hendry, M. J., and Caldwell, D. E. 1992, Programs for determining statistically representative areas of microbial biofilms, Binary, 4: 204–210.Google Scholar
  146. Korber, D. R., Lawrence, J. R., Hendry, M. J., and Caldwell, D. E., 1993, Analysis of spatial variability within mot and mot- Pseudomonas fluorescens biofilms using representative elements, Biofouling 7: 339–358.Google Scholar
  147. Korber, D. R., James, G. A., and Costerton, J. W., 1994a, Evaluation of fleroxacin activity against established Pseudomonas fluorescens biofilms, Appl. Environ. Microbiol. 60: 1663–1669.PubMedGoogle Scholar
  148. Korber, D. R., Caldwell, D. E., and Costerton, J. W., 1994b, Structural analysis of native and pure-culture biofilms using scanning confocal laser microscopy, Abstracts of the National Association of Corrosion Engineers (NACE) Canadian Region Western Conference, Calgary, Alberta.Google Scholar
  149. Korber, D. R., Lawrence, J. R., and Caldwell, D. E., I994c, Effect of motility on surface colonization and reproductive success of Pseudomonas Jluore.scens in dual-dilution continuous culture and batch culture systems, Appl. Environ. Microbiol. 60: 1421–1429.Google Scholar
  150. Korber, D. R., Lawrence, J. R., Lappin-Scott, H. M., and Costerton, J. W., 1995, Growth of microorganisms on surfaces, in: Bacterial Biofilms ( H. M. Lappin-Scott and J. W. Costerton, eds.). Cambridge University Press, Cambridge, U.K., pp. 15–45.Google Scholar
  151. Korber, D. R., Choi, A., and Caldwell, D. E., 1996, Bacterial plasmolysis as a physical indicator of viability, Appl. Environ. Microbiol 62: 3939–3947.PubMedGoogle Scholar
  152. Krassilov, V. A., 1994, Evolutionary synthesis, Trends Ecol. Evol. 9: 149.Google Scholar
  153. Labatiuk, C. W., Schaefer Ill, F. W., Finch, G. R., and Belosevic, M., 1991, Comparison of animal infectivity, excystation, and fluorogenic dye as measures of Giardia muris cyst inactivation by ozone, Appl. Environ. Microbiol. 57: 3187–3192.PubMedGoogle Scholar
  154. Lang, E., Viedt, H., Egestorff, J., and Hanert, H. H., 1992, Reaction of the soil microflora after contamination with chlorinated aromatic compounds and HCH, FEMS Microbiol. Ecol. 86: 275–282.Google Scholar
  155. Lappin, H. M., Greaves, M. P., and Slater, J. H., 1985, Degradation of the herbicide mecoprop 2–2 methyl-4-chlorophenoxypropionic-acid by a synergistic microbial community, Appl. Environ. Microbiol. 49: 429–433.PubMedGoogle Scholar
  156. Lattanzio, Jr., F. A., 1990, The effects of pH and temperature on fluorescent calcium indicators as determined with chelex-100 and EDTA buffer systems, Biochem. Biophys. Res. Comm. 171: 102–108.PubMedGoogle Scholar
  157. Lattanzio, Jr., F. A., and Bartschat, D. K., 1991, The effect of pH on rate constants, ion selectivity and thermodynamic properties of fluorescent calcium and magnesium indicators, Biochem. Biophys. Res. Comm. 177: 184–191.PubMedGoogle Scholar
  158. Lawrence, J. R., and Caldwell, D. E., 1987, Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 14: 15–27.Google Scholar
  159. Lawrence, J. R., and Korber, D. R., 1994, Aspects of microbial surface colonization behavior, in: Trends in Microbial Ecology, ( R. Guerrero and C. Pedros-Alin, eds.), Spanish Society for Microbiology, Barcelona, pp. 113–118.Google Scholar
  160. Lawrence, J. R., Delaquis, P. J., Korber, D. R., and Caldwell, D. E., 1987, Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments, Microb. Ecol. 14: 1–14.Google Scholar
  161. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., and Caldwell, D. E., 1991, Optical sectioning of microbial biofilms, J. Bacteriol. 173: 6558–6567.PubMedGoogle Scholar
  162. Lawrence, J. R., Korber, D. R., and Caldwell, D. E., 1992, Behavioral analysis of Vibrio parahaemolvticus variants in high and low viscosity microenvironments using digital image processing, J. Bacteriol. 174: 5732–5739.PubMedGoogle Scholar
  163. Lawrence, J. R., Wolfaardt, G. M., and Korber, D. R., 1994, Monitoring diffusion in biofilm matrices using confocal laser microscopy, Appl. Environ. Microbiol. 60: 1166–1173.PubMedGoogle Scholar
  164. Lawrence, J. R., Korber, D. R., and Wolfaardt, G. M., Caldwell, D. E., 1995, Behavioral strategies of surface-colonizing bacteria, in: Advances in Microbial Ecology, Vol. 14 (J. G. Jones, ed.), Plenum Press, New York, pp. 1–75.Google Scholar
  165. Leigh, E. G., Jr., 1983, When does the good of the group override the advantage of the individual’? Proc. Nat. Acad. Sci. USA 80: 2985–2989.PubMedGoogle Scholar
  166. Lens, P. N. L., De Beer, D., Cronenberg, C. C. H., Houwen, F. P., Ottengraf, S. P. P., and Verstraete, W. H., 1993, Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles, Appl. Environ. Microbiol. 59: 3803–3815.PubMedGoogle Scholar
  167. Lenski, R. E., and Travisano, M., 1994, Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations, Proc. Natl. Acad. Sci. USA 91: 6808–6814.PubMedGoogle Scholar
  168. Little, B., Ray, R., Wagner, P., Lewandowski, Z., Lee, W. C., Characklis, W. G., and Mansfeld, F., 1991, Impact of biofouling on the electrochemical behavior of 304 stainless steel in natural seawater, Biofouling 3, 45–49.Google Scholar
  169. Loehle, C., and Pechmann, J. H. K., 1988, Evolution: The missing ingredient in systems ecology, American Naturalist 132: 884–899.Google Scholar
  170. Lomnicki, A., 1978, Adventures of ecologists and evolutionists in the land of super-organisms, Wiadomosci Ekologiczne 24: 249–260.Google Scholar
  171. Lovelock, J. E., 1979, Gaia: A New Look at Life on Earth, Oxford University Press, Oxford, UK.Google Scholar
  172. Lovelock, J. E., 1988, Ages of Gaia: A Biography of Our Living Earth, Norton, New York. Lovelock, J. E., and Margulis, L., 1974, Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis, Tellus 26: 2–10.Google Scholar
  173. Lovitt, R. W., and Wimpenny, J. W. T., 1981, Physiological behavior of Escherichia coli grown in opposing gradients of oxidant and reductant in the gradostat, J. Gen. Microbiol. 127: 269.PubMedGoogle Scholar
  174. Luby-Phelps, K., Lanni, F., and Taylor, D. L., 1988, The submicroscopic properties of cytoplasm as a determinant of cellular function, Ann. Rev. Biophys. Chem. 17: 369–396.Google Scholar
  175. Mackie, R. L, Krecek, R. C., Els, H. J., van Niekerk, J. P., Kirschner, L. M., and Baecker, A. A. W., 1989, Characterization of the microbial community colonizing the anal and vulvar pores of helminths from the hindgut of zebras, Appl. Environ. Microbiol. 55: 1178–1186.PubMedGoogle Scholar
  176. MacLeod, F. A., Guiot, S. R., and Costerton, J. W., 1990, Layered structure of bacterial aggregates produced in an uptlow anaerobic sludge bed reactor, Appl. Environ. Microbiol. 56: 1598–1607.PubMedGoogle Scholar
  177. Madsen, T., and Aamand, J., 1992, Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture, Appl. Environ. Microbiol. 58: 557–561.PubMedGoogle Scholar
  178. Maenhaut-Michel, G., and Shapiro, J. A., 1994, The roles of selection and starvation in the emergence of araB-lacZ fusion clones, EMBO J. 13: 5229–5239.Google Scholar
  179. Maigetter, R. Z., and Pfister, R. M., 1974, A mixed bacterial population in a continuous culture with and without kaolinite, Can. J. Microbiol. 21: 173–180.Google Scholar
  180. Malmcrona-Friberg, K., Tunlid, A., Marden, P., Kjelleberg, S., and Odham, G., 1986, Chemical changes in cell envelope and poly-13-hydroxybutyrate during short-term starvation of a marine bacterial isolate, Arch. Microbiol. 144: 340–245.Google Scholar
  181. Margulis, L. 1981, Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth, W. H. Freeman, San Francisco.Google Scholar
  182. Margulis, L., 1990, Introduction, in: Handbook of Protoctista (L. Margulis, J. O. Corliss, M.Google Scholar
  183. Melkonian, D. J. Chapman, and H. I. Mckhann, eds.), Jones and Bartlett, Boston.Google Scholar
  184. Margulis, L., 1992, Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons, W.H. Freeman, Salt Lake City.Google Scholar
  185. Margulis, M., 1993, Microbial communities as units of selection, in: Trends in Microbial Ecology (R. Guerrero and C. Pedros-Alio, eds. ), Spanish Society of Microbiology of Barcelona, pp. 349–352.Google Scholar
  186. Margulis, L., 1995, From kefir to death, in: How Things Are. ( J. Brochmer, Ed.). William Morrow, New York, pp. 69–78.Google Scholar
  187. Margulis, L., and Fester, R., 1991, Symbiosis as a Source of Evolutionary Innovation, MIT Press, Cambridge, Massachusetts.Google Scholar
  188. Margulis, L., and Guerrero, R., 1991, Two plus three equal one: individuals emerge from bacterial communities, in: Gaia 2. Emergence: The New Science of Becoming, Lindisfarne Press, New York, pp. 60–67.Google Scholar
  189. Margulis, M., and West, O., 1993, Gaia and the colonization of Mars, GSA Today, 3: 277–291.PubMedGoogle Scholar
  190. Marshall, K. C., 1994, Microbial ecology: wither goest thou? in: Trends in Microbial Ecology ( R. Guerrero and C. Pedros-Alio, eds.), Spanish Society for Microbiology, Barcelona, pp. 5–8.Google Scholar
  191. Marshall, P. A., Loeb, G. I., Cowan, M. M., and Fletcher, M., 1989, Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy, Appl. Environ. Microbiol. 55: 2827–2831.PubMedGoogle Scholar
  192. Marxsen, J., 1988, Investigations into the number of respiring bacteria in Groundwater from sandy and gravelly deposits, Microb. Ecol. 16: 65–72.Google Scholar
  193. Maynard-Smith, J., 1976, Group selection, Quart. Rev. Biol. 51: 277–283.Google Scholar
  194. Maynard-Smith, J., 1991, A darwinian view of symbiosis, in: Symbiosis as a Source of Evolutionary Innovation ( L. Margulis and R. Fester, eds.), MIT Press, Cambridge, Massachusetts, pp. 83–92.Google Scholar
  195. Mayr, E., 1993, What was the evolutionary synthesis? Trends Eco. Evol. 8: 31–34.Google Scholar
  196. McInerney, M. J., Bryant, M. P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens, Arch. Microbio!. 122: 129–135.Google Scholar
  197. McKinley, V. L., Costerton, J. W., and White, D. C., 1988, Microbial biomass, activity, and community structure of water and particulates retrieved by backflow from a waterflood injection well, Appl. Environ. Microbiol. 54: 1383–1393.PubMedGoogle Scholar
  198. Mitchell, J., Pearson, G. L., Dillon, S., and Kantalis, K., 1995, Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations, Appl. Environ. Microbiol. 61: 4436 4440.Google Scholar
  199. Moller, S., Kristensen, C. S., Poulsen, L. K., Carstensen, J. M., and Molin, S. 1995, Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters, Appl. Environ. Microbiol. 61: 741–748.PubMedGoogle Scholar
  200. Monod, J., 1942, Recherches sur la Croissance des Cultures Bacteriénnes, Hermann, Paris.Google Scholar
  201. Monod, J., 1949, The growth of bacterial cultures, Ann. Rev. Microbio!. 3: 371–394.Google Scholar
  202. Muyzer, G., De Waal, E. C., and Uitterlinden, A. G., 1993, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16s rRNA, Appl. Environ. Microbio!. 59: 695–700.Google Scholar
  203. Neilson, A. H., Allard, A.-S., Hynning, P.-A., and Remberger, M., 1988, Transformations of halogenated aromatic aldehydes by metabolically stable anaerobic enrichment cultures, Appl. Environ. Microbiol. 54: 2226–2236.PubMedGoogle Scholar
  204. Neu, T. R., and Marshall, K. C., 1991, Microbial “footprints”—a new approach to adhesive polymers, Biofouling 3: 101–112.Google Scholar
  205. Ney, U., Schoberth, S. M., Sahm, H., 1991, Anaerobic degradation of sulfite evaporator condensate in a fixed-bed loop reactor by a defined bacterial consortium, Appl. Microbial. Biotechnol. 34: 818–822.Google Scholar
  206. Nichols, P. D., Henson, J. M., Antworth, C. P., Parsons, J., Wilson, J. T., and White, D. C., 1987, Detection of a microbial consortium, including type II methanotrophs, by use of phosopholipid fatty acids in an anaerobic halogenated hydrocarbon-degrading soil column enriched with natural gas, Environ. Toxicol. Chem. 5: 89–97.Google Scholar
  207. Nix, P. G., and Daykin, M. M., 1992, Resazurin reduction tests as an estimate of coliform and heterotrophic bacterial numbers in environmental samples, Bull. Environ. Contam. Toxicol. 49: 354–360.PubMedGoogle Scholar
  208. Noack, D., 1986, Directed selection of differentiation mutants of Streptomyces noursei using chemostat cultivation, J. Basic Microbio!. 26: 231–239.Google Scholar
  209. Novick, A., and Silard, L., 1950, Experiments with the chemostat on mutations of bacteria, Proc. Nat. Acad. Sci. USA 36: 708–719.PubMedGoogle Scholar
  210. Nunney, L., 1985, Group selection, altruism, and structured deme models, Am. Naturalist 126: 212–230.Google Scholar
  211. Olsen, G. J., Lane, D. L., Giovannoni, S. J., and Pace, N. R., 1986, Microbial ecology and evolution: a ribosomal RNA approach, Ann. Rev. of Microbio!. 40: 337–365.Google Scholar
  212. Pace, N. R., Stahl, D. A., Lane, D. L., and Olsen, G. J., 1986, The analysis of natural microbial populations by rRNA sequences, Adv. Microb. Ecol. 9: 1–55.Google Scholar
  213. Palleroni, N. J., 1994, Some reflections on bacterial diversity, ASM News 60: 537–540.Google Scholar
  214. Parkes, R. J., and Senior, E., 1988, Multistate chemostats and other models for studying anoxic ecosystems, in: Handbook of Laboratory Model Systems for Microbial Ecosystems, Vol. 1 ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 51–71.Google Scholar
  215. Patel, G. B., 1984, Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen, Can. J. Microbiol. 30: 1383–1396.Google Scholar
  216. Peck, J. R., 1992, Group selection, individual selection, and the evolution of genetic drift, J. Theor. Biol. 159: 163–187.PubMedGoogle Scholar
  217. Peters, A. C., 1990, Using image analysis to map bacterial growth on solid media, Binary 2: 73–75.Google Scholar
  218. Petrini, O., Hake, U., and Dreyfuss, M. M., 1990, An analysis of fungal communities isolated from fruticose lichens, Mycologia 82: 444–451.Google Scholar
  219. Phelps, T. J., Schram, R. M., Ringelberg, D., Dowling, N. J., and White, D. C., 1991, Anaerobic microbial activities including hydrogen mediated acetogenesis within natural gas transmission lines, Biofouling 3: 265–276.Google Scholar
  220. Pringsheim, E. G., 1946, The biphasic or soil-water culture method for growing algae and flagellata, J. Ecol. 33: 193–204.Google Scholar
  221. Prosser, J. I., 1989, Modeling nutrient flux through biofilm communities, in: Structure and Function of Biofilms ( W. G. Characklis and P. A. Wilderer, eds.), John Wiley and Sons, Toronto, pp. 239–250.Google Scholar
  222. Rasmussen, S. 1988, Toward a quantitative theory of the origin of life, in: Artificial Life, SF! Studies in the Sciences of Complexity ( C. Langton, ed.) Addison-Wesley, New York, pp. 79–104.Google Scholar
  223. Rasmussen, S. 1991, Aspects of information, life, reality and physics, in: Artificial Life II, SF! Studies in the Sciences of Complexity, Vol. X, ( C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, eds.), Addison-Wesley, New York, pp. 767–773.Google Scholar
  224. Rasmussen, S., Knudsen, C., Feldberg, R., Hindsholm, M., 1990, The coreworld: emergence and evolution of cooperative structures in a computational chemistry, Physica D 42: 111–134.Google Scholar
  225. Rajogopal, B. S., Brahmaprakash, G. P., and Sethunanthan, N., 1984, Degradation of carbofuran by enrichment cultures and pure cultures of bacteria from flooded soils, Environmental Pollution Series A, Ecological and Biological 36: 61–74.Google Scholar
  226. Ratnam, D. A., Pavlou, S., and Fredrickson, A. G., 1982, Effects of attachment of bacteria to chemostat walls in a microbial predator-prey relationship, Biotechnol. Bioeng. 24: 2675–2694.PubMedGoogle Scholar
  227. Revsbech, N. P., 1989, Diffusion characteristics of microbial communities determined by use of oxygen microsensors, J. Microbiol. Methods 49: 111–122.Google Scholar
  228. Revsbech, N. P., and Jorgenson, B. B., 1988, Microelectrodes: their use in microbial ecology, in: Advances in Microbial Ecology, Vol. 9 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 293–352.Google Scholar
  229. Robarts, R. D., and Zohary, T., 1993, Fact or fiction—Bacterial growth rates and production as determined by [3H-methyl]thymidine, in: Advances in Microbial Ecology, Vol. 13 ( G. F. Jones, ed.), Plenum Press, New York, pp. 371–418.Google Scholar
  230. Robinson, R. W., Akin, D. E., Nordstedt, R. A., Thomas, M. V., and Aldrich, H. C., 1984, Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors, Appl. Environ. Microbiol. 48: 127–136.PubMedGoogle Scholar
  231. Rodriguez, G. G., Phipps, D., Ishiguro, K, and Ridgway, H. F., 1992, Use of a fluorescent redox probe for direct visualization of actively respiring bacteria, Appl. Environ. Microbiol. 58, 1801–1808.PubMedGoogle Scholar
  232. Rosenberg, E., 1984, Myxobacteria: Development and Cell Interactions, Springer-Verlag, New York.Google Scholar
  233. Rothmel, R. K., Haugland, R. A., Coco, W. M., Sangodkar, U. M. X., and Chakrabarty, A. M. 1989, Natural and directed evolution: microbial degradation of synthetic chlorinated compounds, in: Recent Advances in Microbial Ecology ( T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), JSS Press, Tokyo, pp. 605–610.Google Scholar
  234. Rozgaj, R., and Glancer-Soljan, M., 1992, Total degradation of 6-aminonaphthalene-2-sulphonic acid by a mixed culture consisting of different bacterial genera, FEMS Microbiol. Ecol. 86: 229–235.Google Scholar
  235. Rutgers, M., Bogte, J. J., Breure, A. M., and van Andel, J. G., 1993, Growth and enrichment of pentachlorophenol-degrading microorganisms in the nutristat, a substrate concentration-controlled continuous culture, Appl. Environ. Microbiol. 59: 3373–3377.PubMedGoogle Scholar
  236. Saavedra-Molina, A., Uribe, S., and Devlin, T. M., 1990, Control of mitochondrial matrix calcium: studies using fluo-3 as a fluorescent calcium indicator, Biochem. Biophys. Res. Comm. 167: 148–153.PubMedGoogle Scholar
  237. Sauch, J. F., Flanigan, D., Galvin, M. L., Berman, D., and Jakubowski, W., 1991, Propidium iodide as an indicator of Giardia cyst viability, Appl. Environ. Microbiol. 57: 3243–3247.PubMedGoogle Scholar
  238. Schiefer, G. E., and Caldwell, D. E., 1982, Synergistic interaction between Anabaena and Zoogloea spp. in carbon dioxide limited continuous cultures, Appl. Environ. Microbiol. 44: 84–87.PubMedGoogle Scholar
  239. Schmidt, E. L., 1972, Fluorescent antibody techniques for the study of microbial ecology, in: Modern Methods in the Study of Microbial Ecology, Vol. 17 ( T. Rosswall, ed.), Swedish Natural Science Research Council, Stockholm, pp. 67–76.Google Scholar
  240. Schmidt, T. M., Delong, E. F., and Pace, N. R., 1991, Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol. 173: 4371–4378.PubMedGoogle Scholar
  241. Schulze, E. D., and Mooney, H. A., 1993, Biodiversity and Ecosystem Function Ecological Studies 99, Springer-Verlag, New York.Google Scholar
  242. Schwemmler, W., 1989, Symbiogenesis: A Macro-mechanism of Evolution, Walter de Gruyter, Berlin.Google Scholar
  243. Scott, O. T., 1985, Petridoglycan envelope in the cyanelles of Glaucocystis nostochinearum, in: Planetary Ecology ( D. E. Caldwell, J. A. Brierley, and C. L. Brierley, eds.), Van Nostrand Reinhold Co., New York, pp. 27–40.Google Scholar
  244. Senior, E., Bull, A. T., and Slater, J. H., 1976, Enzyme evolution in a microbial community growing on the herbicide Dalapon, Nature 263: 476–479.PubMedGoogle Scholar
  245. Shapiro, J. A., 1984, The use of Mudlac transposotts as tools for vital staining to visualize clonal and non-clonal patterns of organization in bacterial growth on agar surfaces, J. Gen. Microbiol. 130: 1169–1181.PubMedGoogle Scholar
  246. Shapiro, J. A., 1985a, Photographing bacterial colonies, ASM News 51: 62–69.Google Scholar
  247. Shapiro, J. A., 19856, Mechanisms of DNA reorganization in bacteria, Int. Rev. Cytol. 93: 25–56.Google Scholar
  248. Shapiro, J. A., 1988, Bacteria as multicellular organisms, Sci. Am. 256: 82–89.Google Scholar
  249. Shapiro, J. A., 1992, Differential action and differential expression of E. coli DNA polymerase I during colony development, J. Bacteriol. 174: 7262–7272.PubMedGoogle Scholar
  250. Shapiro, J. A., and Higgins, N. P., 1988, Variation of B-galactosidase expression from Mudlac elements during the development of E. coli colonies, Annales de l’institut Pasteur 139: 79–103.Google Scholar
  251. Shapiro, J. A., and Trubatch, D., 1991, Sequential events in bacterial colony morphogenesis, in: Waves and Patterns in Chemical and Biological media ( H. L. Swinney and V. I. Krinski eds.), Elsevier Science, Amsterdam, pp. 214–223.Google Scholar
  252. Shen, C. F., Kosaric, N., and Blaszczyk, R., 1993, The effect of heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular substance, Water Res. 27: 25–33.Google Scholar
  253. Shotton, D. M., 1989, Confocal scanning optical microscopy and its applications for biological specimens, J. Cell Sci. 94: 175–206.Google Scholar
  254. Sissons, C. H., Wong, L., Cutress, T. W., 1995, Patterns and rates of growth of microcosm dental plaque biofilms, Oral Microbiol. Immunol. 10: 160–167.PubMedGoogle Scholar
  255. Sjollema, J., Busscher, H. J., and Wéerkamp, A. H., 1989a, Experimental approaches for studying adhesion of microorganisms to solid substrata: Applications and mass transport, J. Microbio!. Meth. 9: 79–90.Google Scholar
  256. Sjollema, J., Busscher, H. J., and Weerkamp, A. H., 1989b, Real-time enumeration of adhering microorganisms in a parallel plate flow cell using automated image analysis, J. Microbiol. Meth. 9: 73–78.Google Scholar
  257. Sjollema, J., Van der Mei, H. C., Uyen, H. M. W., and Busscher, H. J., 1990, The influence of collector and bacterial cell surface properties on the deposition of oral streptococci in a parallel plate flow cell, J. Adhesion Sci. Technol. 4: 765–777.Google Scholar
  258. Skryabin, G. K., Golovleva, L. A., Golovlev, E. L., Pertsova, R. N., and Zyakun, A. M., 1978, Degradation of DDT and its analogs by soil microflora, Izvestiya Akademii Nauk Sssr Seriya Biologicheskaya 3: 352–365.Google Scholar
  259. Slater, J. H., 1988, Microbial population and community dynamics, in: Micro-organisms in Action: Concepts ( J. M. Lynch and J. E. Hobbie, eds.), Blackwell Scientific, Palo Alto, CA, pp. 51–74.Google Scholar
  260. Slater, J. H., and Hartman, D. J., 1982, Microbial ecology in the laboratory: experimental systems, in: Experimental Microbial Ecology ( R. G. Bums and J. H. Slater, eds.), Blackwell Scientific, Oxford, pp. 255–274.Google Scholar
  261. Smith, G. A., Nickels, J. S., Kerger, B. D., Davis, J. D., Collins, S. P.. Wilson, J. T., McNabb, J. F., and White, D. C., 1986, Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination, Can. J. Microbiol. 32: 104–111.Google Scholar
  262. Sober, E., 1984, The Nature Of Selection: Evolutionary Theory in Philosophical Terms, Bradford, Cambridge, MA.Google Scholar
  263. Sonea, S., 1991, Bacterial evolution without speciation, in: Symbiosis as a Source of Evolutionary Innovation ( L. Margulis and R. Fester, eds.), MIT Press, Cambridge, Massachusetts, pp. 95–105.Google Scholar
  264. Sonea, S., and Panisset, M., 1983, A New Bacteriology, Jones and Bartlett, Boston, MA.Google Scholar
  265. Stahl, D. A., Lane, D. J., Olson, G. J., and Pace, N. R., 1984, Analysis of hydrothermal ventassociated symbionts by ribosomal RNA sequences, Science 224: 409–411.PubMedGoogle Scholar
  266. Stahl, D. A., Flesher, B., Mansfield, H. R., and Montgomery, L., 1988, Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology, Appl. Environ. Microbiol. 54: 1079–1084.PubMedGoogle Scholar
  267. Stams, A. J. M., Grotenhuis, J. T. C., and Zehnder, A. J. B. 1989, Structure-function relationship in granular sludge, in: Recent Advances in Microbial Ecology (T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida, eds.), Japan Scientific Societies, Tokyo, pp. 440–445.Google Scholar
  268. Starmer, W. T., Ganter, P., Aberdeen, B., Lachance, M. A., and Phaff, H. J., 1987, The ecological role of killer yeasts in natural communities of yeasts, Can. J. Microbiol. 33: 783–796.PubMedGoogle Scholar
  269. Starmer, W. T., Ganter, P. F., and Aberdeen, B., 1992, Geographic distribution and genetics of killer phenotypes for the yeast Pichia kluyveri across the United States, Appl. Env. Microbiol. 58: 990–997.Google Scholar
  270. Stevens, T. O., and Holbert, B. S., 1990, Density-dependent growth patterns exhibited by bacteria from terrestrial subsurface environments, Abstracts of the Conference on Multicellular and Interactive Behavior of Bacteria, American Society of Microbiology, Marine Biological Laboratory, Woods Hole, Massachusetts, p. 20.Google Scholar
  271. Stewart, P. S., Peyton, B. M., Drury, W. J., and Murga, R., 1993, Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms, Appl. Environ. Microbiol. 59: 327–329.PubMedGoogle Scholar
  272. Szathmary, E. and Demeter, L., 1987, Group selection of early replicators and the origin of life, J. Theoret. Biol. 128: 463–486.Google Scholar
  273. Szybalski, W. 1952, Gradient plates for the study of microbial resistance to antibiotics, Bacteriol. Proc. 36.Google Scholar
  274. Szybalski, W., and Bryson, V., 1953, Genetic studies on microbial cross-resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics, J. Bacteriol. 64: 489–499.Google Scholar
  275. Tabor, P. S., and Neihof, R. A., 1982, Improved method for determination of respiring individual microorganisms in natural waters, Appl. Environ. Microbiol. 43: 1249–1255.PubMedGoogle Scholar
  276. Tagger, S., Truffaut, N., and Le Petit, J., 1990, Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from a marine sediment, Can. J. Microbiol. 36: 676–681.PubMedGoogle Scholar
  277. Takana, H., Matsumura, M., and Veliky, I. A., 1984, Diffusion characteristics of substrates in Ca-alginate gel beads, Biotechnol. Bioeng. 26: 53–58.Google Scholar
  278. ten Brummeler, E., Hulshoff Pol, L. W., Dolfing, J., Lettinga, G., and Zehnder, A. J. B., 1985, Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture, Appl. Environ. Microbiol. 49: 1472–1477.PubMedGoogle Scholar
  279. Thiele, J. H., Chartrain, M., and Zeikus, J. G., 1988, Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis, Appl. Environ. Microbial. 54: 10–19.Google Scholar
  280. Troy, F. A., 1979, The chemistry and biosynthesis of selected bacterial capsular polymers, Ann. Rev. Microbiol. 33: 519–560.Google Scholar
  281. Trulear, M. G., and Characklis, W. G., 1982, Dynamics of biofilm processes, J. Wat. Poll. Control Fed. 54: 1288–1301.Google Scholar
  282. Tsien, R. Y., 1989, Fluorescent indicators of ion concentrations, Meth. Cell Biol. 30: 127–156.Google Scholar
  283. Tsien, R. Y., and Waggoner, A., 1990, Fluorophores for confocal microscopy: photophysics and photochemistry, in: Handbook of Confocal Microscopy ( J. B. Pawley, ed.), Plenum Press, New York, pp. 169–178.Google Scholar
  284. Uhlinger, D. J., and White, D. C., 1983, Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica, Appl. Environ. Microbial. 45: 64–70.Google Scholar
  285. Upton, A. D., Nedwell, D. B., Wynn-Williams, D. D., 1990, The selection of microbial communities by constant or fluctuating temperatures, FEMS Microb. Ecol. 74: 243–252.Google Scholar
  286. Veldkamp, H., 1977, Ecological studies with the chemostat, in: Advances in Microbial Ecology, Vol. I ( M. Alexander, ed.), Plenum Press, New York, pp. 59–94.Google Scholar
  287. Veldkamp, H., and Jannasch. H. W., 1972, Mixed culture studies with the chemostat, J. Appl. Chem. Biotechnol. 22: 105–123.Google Scholar
  288. Voordouw, G., Shen, Y., Harrington, C. S., Telang, A. J., Jack, T. R., and Westlake, D. W. S., 1993, Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters, Appl. Environ. Microbiol. 59: 4101–4114.PubMedGoogle Scholar
  289. Voordouw, G., Voordouw, J. K., Jack, T. R., Foght, J., Fedorak, P. M., and Westlake, D. W. S., 1991, Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application oto the identification of sulfate-reducing bacteria in oil field samples, Appl. Environ. Microbiol. 57: 3070–3078.PubMedGoogle Scholar
  290. Voordouw, G., Voordouw, J. K., Jack, T. R., Foght, J., Fedorak, P. M., and Westlake, D. W. S., 1992, Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sampling genome probing, Appl. Environ. Microbiol. 58: 3542–3552.PubMedGoogle Scholar
  291. Wade, M. J., 1978, O. Rev. Biol. 53: 101–114.Google Scholar
  292. Wagner, M., Amann, R., Lemmer, H., and Schleifer, K.-H., 1993, Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure, Appl. Environ. Microbial. 59: 1520–1525.Google Scholar
  293. Ward, D. M., Bateson, M. M., Weller, R., and Ruff-Roberts, A. L., 1992, Ribosomal RNA analysis of microorganisms as they occur in nature, in: Advances in Microbial Ecology, Vol. 12 ( K. C. Marshall, ed. ), Plenum Press, pp. 219–286.Google Scholar
  294. Ward, D. M., Weller, R., and Bateson, M. M., 1990, 16s rRNA sequences reveal uncultured inhabitants of a well-studied thermal community, Nature 345: 63–65.Google Scholar
  295. Weber, N. A., 1966, Fungus-growing ants, Science 153: 587–604.PubMedGoogle Scholar
  296. Weber, N. A., 1972, The fungus-culturing behavior of ants, American Zoologist 12: 577–587.Google Scholar
  297. Weinberg, E. D., 1957, Double-gradient agar plates, Science 125: 196.PubMedGoogle Scholar
  298. White, D. C., 1986, Environmental effects testing with quantitative microbial analysis: chemical signatures correlated with in situ biofilm analysis by FTIIR, Toxicity Assessment 1: 315–338.Google Scholar
  299. White, J. G., Amos, W. B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structure by fluorescence light microscopy, J. Cell Biol. 105: 41–48.Google Scholar
  300. Wilkinson, T. G., Topiwala, H. H., and Hamer, G., 1974, Interactions in a mixed bacterial population growing on methane in continuous culture, Biotechnol. Bioeng. 16: 41–59.PubMedGoogle Scholar
  301. Wilson, D. S., 1980, The Natural Selection of Populations and Communities, Benjamin-Cummings, Menlo Park, CA.Google Scholar
  302. Wilson, D. S., 1987, Altruism in mendelian populations derived from sibling groups. The Haystack model revisited. Evolution 41: 1059–1070.Google Scholar
  303. Wilson, D. S., 1992, Complex interactions in metacommunities with implications for biodiversity and higher levels of selection, Ecology 73: 1984–2000.Google Scholar
  304. Wilson, J. B., 1987, Group selection in plant populations, Theoret. Appl. Genet. 74: 493–502.Google Scholar
  305. Wimpenny, J. W. T., 1988, Bidirectionally linked continuous culture: the gradostat, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, ‘Vol. 1 (J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 73–98.Google Scholar
  306. Wimpenny, J. W. T., 1992, Microbial systems: Patterns in space and time, in: Advances in Microbial Ecology, Vol. 12 ( K. C. Marshall, ed.), Plenum Press, New York, pp. 469–522.Google Scholar
  307. Wimpenny, J. W. T., and Waters, P., 1984, Growth of microorganisms in gel-stabilized twodimensional diffusion gradient systems, J. Gen. Microbial. 130: 2921–2936.Google Scholar
  308. Wimpenny, J. W. T., Waters, P., and Peters, A., 1988, Gel-plate methods in microbiology, in: CRC Handbook of Laboratory Model Systems for Microbial Ecology Research, Vol. 1 ( J. W. T. Wimpenny, ed.), CRC Press, Boca Raton, pp. 229–251.Google Scholar
  309. Wimpenny, J. W. T., Gest, H., and Favinger. J. L., 1986, The use of two-dimensional gradient plates in determining the responses in non-sulphur purple bacteria to pH and NaCI concentration, FEMS Microbial. Leu. 37: 367–371.Google Scholar
  310. Wirsen, C. O., and Jannasch, H. W., 1970, Growth response of Spirosoma sp. to temperature shifts in continuous culture, Bacteriological Proceedings G118: 32.Google Scholar
  311. Woese, C. R., 1987, Bacterial evolution, Microb. Rev. 51: 221–271.Google Scholar
  312. Wolfaardt, G. M., Lawrence, J. R., Hendry, M. J., Robarts, R. D., and Caldwell, D. E., 1993, Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia, Appl. Environ. Microb. 59: 2388–2396.Google Scholar
  313. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., Caldwell, S. J., and Caldwell, D. E., 1994a, Multicellular organization in a degradative biofilm community, Appl. Environ. Microbial. 60: 434–446.Google Scholar
  314. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1994b, The role of interactions, sessile growth and nutrient amendment on the degradative efficiency of a bacterial consortium, Can. J. Microbiol. 40: 331–340.PubMedGoogle Scholar
  315. Wolfaardt, G. M., Lawrence, J. R., Headley, J. V., Robarts, R. D., and Caldwell, D. E., 1994e, Microbial expolymers provide a mechanism for bioaccumulation of contaminants, Microbial Ecology 27: 279–291.Google Scholar
  316. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1994d, Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation, Appl. Environ. Microbiol. (in press).Google Scholar
  317. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E., 1995, In situ characterization of biofilm expolymers involved in the accumulation of chlorinated organics (submitted).Google Scholar
  318. Wright, J. B., Costerton, J. W., and McCoy, W. F. 1988, Filamentous growth of Pseudomonas aeruginosa, J. Indust. Microbiol. 3: 139–146.Google Scholar
  319. Yockey, H. P., 1990, When is random random? Nature 344: 823.Google Scholar
  320. Yockey, H. P., 1995, Information in bits and bytes: reply to Lifson’s review of Information Theory and Molecular Biology, Bioessays 17: 85–88.Google Scholar
  321. Yu, F. P. and McFeters, G. A., 1994, Physiological response of bacteria in biofilms to disinfection, Appl. Environ. Microbiol. 60: 2462–2466.Google Scholar
  322. Zahavi, A., 1981, Some comments on sociobiology, Auk 98: 412–415.Google Scholar
  323. Zahavi, A., and Ralt, D., 1984, Social adaptations in myxobacteria, in: Myxobacteria: Development and Cell Interactions ( E. Rosenberg, ed.), Springer-Verlag, New York, pp. 216–245.Google Scholar
  324. Zeikus, J. G., and Johnson, E. A., 1991, Mixed Cultures in Biotechnology, McGraw-Hill, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Douglas E. Caldwell
    • 1
  • Gideon M. Wolfaardt
    • 1
  • Darren R. Korber
    • 1
  • John R. Lawrence
    • 2
  1. 1.Department of Applied Microbiology and Food ScienceUniversity of SaskatchewanSaskatoonCanada
  2. 2.National Hydrology Research InstituteSaskatoonCanada

Personalised recommendations