Advertisement

PCS of semimetals, semiconductors, and dielectrics

  • Yu. G. Naidyuk
  • I. K. Yanson
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 145)

Abstract

The distinctive feature of semimetals and semiconductors is, first of all, the low density of charge carriers compared with ordinary metals. Thus, in typical semimetals as arsenic, antimony, and bismuth, the carrier density n decreases from about 2×1020 (As) to 3×1017 (Bi) per cm3, whereas in metals, n is 1022−1023 cm3. These values can be still lower by several orders of magnitude in semiconductors depending on the doping level. Accordingly, the Fermi energy decreases from several eV in metals to tens of meV and lower in semimetals (Fig. 11.1). Because of the band structure peculiarities, an effective mass of charge carriers both in semimetals and semiconductors can be one order of magnitude lower as compared with the metals. The small effective mass leads to the decrease of the Larmor radius to a value comparable with the contact size already in an easily attainable fields of about a few Tesla. The effect of a magnetic field on the EPI spectra in As and Sb was described in Section 8.3. Additionally, the de Broglie wavelength at the Fermi energy λ Bn −1/3 increases in semimetals up to tens of nanometers (Fig. 11.1), i. e., it may become comparable with the contact dimension. This leads to the influence of the quantum interference effects on the contact conductivity. Again, the low carrier density increases a screening length r sn −1/6 (Fig. 11.1) in the case of semiconductor-metal contact, resulting in Schottky barrier formation (see Fig. 2.5) with a low concentration of carriers at the surface. All mentioned features lead both to the new interesting phenomena in point contacts as well as to difficulties in their interpretation, in particular how to separate bulk properties from the surface influence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arutyunov K. Yu., Gitsu D. V., Kondrya E. P., Nikolaeva A. A. and Rybaltchenko L. F. (1996) Physica B 218 35.ADSCrossRefGoogle Scholar
  2. Bogachek E. N. and Shkorbatov A. G. (1985) Sov. J. Low Temp. Phys. 11 353.Google Scholar
  3. Buckel W. and Witting J. (1965) Phys. Lett. 17 187.ADSCrossRefGoogle Scholar
  4. Gerlach-Meyer U. and Queisser H. J. (1983) Phys. Rev. Lett. 51 1904.ADSCrossRefGoogle Scholar
  5. Gribov N. N., Samuely P., Kokkedee J. A., Jansen A. G. M., Wyder P. and Yanson I. K. (1991) Phys. Rev. Lett. 66 786.ADSCrossRefGoogle Scholar
  6. Itskovich I. F., Kulik I. O. and Shekhter R. I. (1984) Solid State Commun 50 421.ADSCrossRefGoogle Scholar
  7. Itskovich I. F. and Shekhter R. I. (1984) Soy. J. Low Temp. Phys. 10 229. Itskovich I. F., Kulik 1. O. and Shekhter R. I. (1987) Soy. J. Low Temp. Phys. 13 659.Google Scholar
  8. Kulik I. O. and Shekhter R. I. (1983) Phys. Lett. A 98 132.ADSCrossRefGoogle Scholar
  9. Le Hang Nguyen, Riegel H., Asen-Palmer M. and Gmelin E. (1996) Physica B 218 248.ADSCrossRefGoogle Scholar
  10. Naidyuk Yu. G., Koshkin I. V. and Lysykh A. A. (1987) Sov. J. Low Temp. Phys. 13 57.Google Scholar
  11. Pepper M. (1980) J. Phys. F 13 L709, L717, L721.Google Scholar
  12. Pong-Fei Lu, Tsui D. C. and Cox H. M. (1985) Phys. Rev. Lett. 54 1563.ADSCrossRefGoogle Scholar
  13. Sato H., Sakamoto L, Yonemitsu K. and Hishiyama Y. (1988) J. Phys. Soc. Japan 57 2456.ADSCrossRefGoogle Scholar
  14. Shekhter R. I. (1983) Soy. Phys. and Techn of Semicond. 17 1463.Google Scholar
  15. Shkorbatov A. G., Feher A and Stefanyi P. (1996) Physica B 218 242.ADSCrossRefGoogle Scholar
  16. Stefanyi P., Feher A. and Orendacova A. (1990) Phys. Lett. A 143 259.ADSCrossRefGoogle Scholar
  17. Stefanyi P., Feher A. and Shkorbatov A. G. (1992) Soy. J. Low Temp. Phys. 17 107.Google Scholar
  18. Trzcinski R., Gmelin E. and Queisser H. J. (1986) Phys. Rev. Lett. 56 1086.ADSCrossRefGoogle Scholar
  19. Trzcinski R., Gmelin E. and Queisser H. J. (1987) Phys. Rev. B 35 6373.ADSCrossRefGoogle Scholar
  20. Vengurlekar A. S. and Inkson J. C. (1983) Solid State Commun. 45 17.ADSCrossRefGoogle Scholar
  21. Weber L., Gmelin E. and Queisser H. J. (1989) Phys. Rev. B 40 1244.ADSCrossRefGoogle Scholar
  22. Weber L., Lehr M. and Gmelin E. (1991) Phys. Rev. B 43 4317.ADSCrossRefGoogle Scholar
  23. Weber L., Lehr M. and Gmelin E. (1992) Phys. Rev. B 46 9511.ADSCrossRefGoogle Scholar
  24. Yanson I. K., Gribov N. N. and Shklyarevskii O. I. (1985) JETP Lett. 42 195.ADSGoogle Scholar
  25. Yanson I. K., Shklyarevskii O. I. and Gribov N. N. (1992) J. Low Temp. Phys. 88 135.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2005

Authors and Affiliations

  • Yu. G. Naidyuk
    • 1
  • I. K. Yanson
    • 1
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations