The Mechanism of Apoptosis Regulation by IAP Antagonist Smac/DIABLO

Chapter

Abstract

Caspases are central components of the machinery responsible for cell apoptosis. The inhibitor of apoptosis proteins (IAPs) could efficiently block the caspases activation. Recently, a novel cell death regulator Smac/DIABLO (second mitochondria derived activator of caspases/Direct IAP Binding protein with low PI) was identified. Smac/DIABLO performs a critical function in apoptosis by eliminating the inhibition of IAPs. This article will firstly review the role of caspases and IAPs in apoptosis and then focus on the mechanism of apoptosis regulation by IAP antagonist Smac. We will discuss what is currently known about Smac/DIABLO such as the structure and function of Smac/DIABLO in apoptosis; its relation with Bd-2 family proteins as well as its potenial application in cancer therapy.

Key Words

Apoptosis Smac/DIABLO Caspases IAP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.M., and Cory, S. (1998). The Bc1–2 protein family: arbitries of cell survival. Science 281: 1322–1326.PubMedCrossRefGoogle Scholar
  2. Adida, C., Berrebi, D., Peuchmaur, M., Reyes-Mugica, M., and Altieri, D.C. (1998). Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351 (9106): 882–883.PubMedCrossRefGoogle Scholar
  3. Adrain, C., Creagh, E.M., and Martin, S.J. (2001). Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bc1–2. EMBO J; 20 (23): 6627–36.PubMedCrossRefGoogle Scholar
  4. Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W., and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, p. 171.PubMedCrossRefGoogle Scholar
  5. Ambrosini, G., Adida, C., and Altieri, D. (1997). A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 3: 917–921.PubMedCrossRefGoogle Scholar
  6. Antonsson, B., Montessuit, S., Lauper, S., Eskes, R., and Martinou, J.C. (2000). Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345: 271–278.PubMedCrossRefGoogle Scholar
  7. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., and Wallach, D. (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1– and TNF receptor-induced cell death. Cell 14; 85 (6): 803–15.Google Scholar
  8. Borden, K.L., and Freemont, P.S. (1996). The RING finger domain: a recent example of a sequence-structure family. Curr. Opin. Struct. Biol. 6 (3): 395–401.PubMedCrossRefGoogle Scholar
  9. Borden, K.L. (2000). RING domains: master builders of molecular scaffolds ? J. Mol. Biol. 295: 1103–12.PubMedCrossRefGoogle Scholar
  10. Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. (1999). Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15: 269–290.PubMedCrossRefGoogle Scholar
  11. Cardone, M.H., Roy, N., Stennicke, H.R., Salvesen, G.S., Franke, T.F., Stanbridge, E., Frisch, S., and Reed, J.C. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 13; 282 (5392): 1318–21.Google Scholar
  12. Chai, J., Du, C., Wu, J.W., Kyin, S., Wang, X., and Shi, Y. (2000). Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 24; 406(6798): 855–62.Google Scholar
  13. Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Datta, P., Alnemri, E.S., Shi, Y., and Dataa, P. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell 104 (5): 769–80.PubMedCrossRefGoogle Scholar
  14. Chaohong Sun, Mengli Cai, Robert, P., Meadows, Nan Xu, Angelo, H., Gunasekera, Julia Herrmann, Joe C. Wu, and Stephen W. Fesik (2000). NMR Structure and Mutagenesis of the Third Bir Domain of the Inhibitor of Apoptosis Protein XIAP J. Biol. Chem. 275: 33777–33781.PubMedCrossRefGoogle Scholar
  15. Crook, N.E., Clem, R.J., and Miller, L.K. (1993). An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67: 2168–74.PubMedGoogle Scholar
  16. Deng, Y., Lin, Y., and Wu, X. (2002). TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes. Dev. 16 (1): 33–45.PubMedCrossRefGoogle Scholar
  17. Deveraux, Q.L., Leo, E., Stennicke, H.R., Welsh, K., Salvesen, G.S., and Reed, J.C. (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18: 5242–51.PubMedCrossRefGoogle Scholar
  18. Deveraux, Q.L., N. Roy, H.R. Stennicke, T. Van Arsdale, Q. Zhou, M. Srinivasula, E.S. Alnemri, G.S. Salvesen, and J.C. Reed. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17: 2215–2223.PubMedCrossRefGoogle Scholar
  19. Deveraux, Q.L., R. Takahashi, G.S. Salvesen, and J.C. Reed. (1997). X-linked IAP is a direct inhibitor of cell death proteases. Nature 388: 300–303.PubMedCrossRefGoogle Scholar
  20. Du, C., M. Fang, Y. Li, L. Li, and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42.PubMedCrossRefGoogle Scholar
  21. Earnshaw, W.C., Martins, L.M., and Kaufmann, S.H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383–424.PubMedCrossRefGoogle Scholar
  22. Ellis, R.E., J.Y. Yuan, and H.R. Horvitz. (1991). Mechanisms and functions of cell death. Annu. Rev. Cell. Biol. 7: 663–698.PubMedCrossRefGoogle Scholar
  23. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43–50.PubMedCrossRefGoogle Scholar
  24. Fernandes-Alnemri, T., Armstrong, R.C., Krebs, J., Srinivasula, S.M., Wang, L., Bullrich, F., Fritz, L.C., Trapani, J.A., Tomaselli, K.J., Litwack, G., and Alnemri, E.S. (1996). In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA. 93 (15): 7464–9.PubMedCrossRefGoogle Scholar
  25. Fesik, S.W., and Shi, Y. (2001). Controlling caspases. Science 294: 1477–1478.PubMedCrossRefGoogle Scholar
  26. Fulda, S., Wick, W., Weller, M., and Debatin, K.M. (2002). Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med. 8 (8): 808–15.PubMedGoogle Scholar
  27. Goya!, L., K. McCall, J. Agapite, E. Hartwieg, and Steller, H. (2000). Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19: 589–597.CrossRefGoogle Scholar
  28. Hegde, R., Srinivasula, S.M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A.S., Fernandes-Alnemri, T., and Alnemri, E.S. (2002). Identification of Omi/HtrA2 as a mitochondria) apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277 (1): 432–8.PubMedCrossRefGoogle Scholar
  29. Holcik, M., Gibson, H., and Korneluk, R.G. (200I). XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 6(4): 253–61. Review.Google Scholar
  30. Hsu, Y.T., Wolter, K.G., and Youle, R.J. (1997). Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc. Natl. Acad. Sci. USA 94: 3668–3672.PubMedCrossRefGoogle Scholar
  31. Huang, Y., Park, Y.C., Rich, R.L., Segal, D., Myszka, D.G., and Wu, H. (2001). Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104 (5): 781–90.PubMedGoogle Scholar
  32. Kawasaki, H., Altieri, D.C., Lu, C.D., Toyoda, M., Tenjo, T., and Tanigawa, N. (1998). Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res. 58 (22): 5071–4.PubMedGoogle Scholar
  33. Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski. D.J., and Williams, L.T. (1997). Caspase-3–generated fragment of gelsolin: effector of morphological chuge in apoptosis. Science 278: 294–298.Google Scholar
  34. Lee, N., MacDonald, H., Reinhard, C., Halenbeck, R., Roulston, A., Shi, T., and Williams, L.T. (1997). Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc. Natl. Acad. Sci. USA 94, 13642–13647.PubMedCrossRefGoogle Scholar
  35. Li, F., Ambrosini, G., Chu, E.Y., Plescia, J., Tognin, S., Marchisio, P.C., and Altieri, D.C. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396: 580–584.PubMedCrossRefGoogle Scholar
  36. Li, P., D. Nijhawan, I. Budihardjo, S. Srinivasula, M. Ahmad, E. Alnemri, and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 81: 479–489.CrossRefGoogle Scholar
  37. Liston, P., N. Roy, K. Tamai, C. Lefebvre, S. Baird, G. Cherton-Horvat, R. Farahani, M. McLean, J. Ikeda, A. MacKenzie, and R.G. Komeluk. (1996). Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379: 349–353.PubMedCrossRefGoogle Scholar
  38. Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W.T., and Wang, X. (1998). The 40–kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. USA 95: 8461–8466.PubMedCrossRefGoogle Scholar
  39. Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175–184.PubMedCrossRefGoogle Scholar
  40. Liu, Z., Sun, C., Olejniczak, E.T., Meadows, R.P., Betz, S.F., Oost, T. Herrmann, J., Wu, J.C., and Fesik, S.W. (2000). Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408 (6815): 1004–8.Google Scholar
  41. Lu, C.D., Altieri, D.C., and Tanigawa, N. (1998). Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res. 58 (9): 1808–12.PubMedGoogle Scholar
  42. Matthias, E., Baohua, H., Zehan, C., Robert P. Meadows, Shi-Chung Ng, Lixin Zheng, Michael J. Lenardo, and Stephen W. Fesik (1998). NMR structure and mutagenesis of the FADD (Morti) death-effector domain: Nature 392: 941–945.Google Scholar
  43. MacKenzie, A., and Casse, E.L. (2000). Inhibition of IAP’s protection by Diablo/Smac: new therapeutic opportunities? Cell Death and Differentiation 7: 866–867.PubMedCrossRefGoogle Scholar
  44. Martin, S.J., Reutelingsperger, C.P., McGahon, A.J., Rader, J.A., van Schie, R.C., LaFace, D.M., and Green, D.R. (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556.PubMedCrossRefGoogle Scholar
  45. Martins, L.M., Iaccarino, I., Tenev, T., Gschmeissner, S., Totty, N.F., Lemoine, N.R., Savopoulos, J., Gray, C.W., Creasy, C.L., Dingwall, C., Downward, J. (2002). The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 277 (1): 439–44.PubMedCrossRefGoogle Scholar
  46. Millet, A., Bettaieb, A., Renaud, F., Prevotat, L., Hammann, A., Solary, E., Mignotte, B., and Jeannin, J.F. (2002). Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123 (1): 235–46.PubMedCrossRefGoogle Scholar
  47. Murphy, K.M., Ranganathan, V., Farnsworth, M.L., Kavallaris, M., and Lock, R.B. (2000). BcI-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell. Death. Differ. 7: 102–111.PubMedCrossRefGoogle Scholar
  48. Muzio, M., Stockwell, B.R., Stennicke, H.R., Salvesen, G.S., and Dixit, V.M. (1998). An induced proximity model for caspase-8 activation. J. Biol. Chem. 273: 2926–2930.PubMedCrossRefGoogle Scholar
  49. N.D. Rawlings, in: A.J. Barrett, N.D. Rawlings, and J.F. Woessner (1998). Handbook of Proteolytic Enzymes, (Academic Press, San Diego, CA ), Chapter 247.Google Scholar
  50. Nomura, M., Shimizu, S., Ito, T., Narita, M., Matsuda, H., and Tsujimoto, Y. (1999). Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bc1–2. Cancer Res. 59: 5542–5548.PubMedGoogle Scholar
  51. Okada, H., Suh, W.K., Jin, J., Woo, M., Du, C., Elia, A., Duncan, G.S., Wakeham, A., Itie, A., Lowe, S.W., Wang, X., and Mak, T.W. (2002). Generation and characterization of Smac/DIABLO-deficient mice. Mol. Cell. Biol. 22 (10): 3509–3517.PubMedCrossRefGoogle Scholar
  52. Peter, M.E., and Krammer, P.H. (1998). Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr. Opin. Immunol. 10 (5): 545–51.PubMedCrossRefGoogle Scholar
  53. Qin, H., Srinivasula, S.M., Wu, G., Fernandes-Alnemri, T., Alnemri, E.S., and Shi, Y. (1999). Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399 (6736): 549–57.PubMedCrossRefGoogle Scholar
  54. Riedl, S.J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S.W., Liddington, R.C., and SalvesenGoogle Scholar
  55. G.S. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell 104 (5): 791–800.CrossRefGoogle Scholar
  56. Rodriguez, J., and Lazebnik, Y. (1999). Caspase-9 and Apaf-1 form an active holoenzyme. Genes. Dev. 13: 3179–3184.PubMedCrossRefGoogle Scholar
  57. Roy, N., Mahadevan, M.S., McLean, M., Shutler, G., Yaraghi, R., Farahani, S., Baird, A., Besner-Johnson, Lefebvre, C., Kang, X., Salih, M., Aubry, H., Tamai, K., Guan, X., Ioannou, P., Crawford, T.O., Jong, P.J., Surh, L., Ikeda, J.E., Korneluk, R.G., and MacKenzie, A. (1995). The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80: 167–178.PubMedCrossRefGoogle Scholar
  58. Rudel, T., and Bokoch, G.M. (1997). Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, pp. 1571–1574.PubMedCrossRefGoogle Scholar
  59. Saleh, A., Srinivasula, S.M., Acharya, S., Fishel, R., and Alnemri. E.S. (1999). Cytochrome c and dATPmediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274: 17941–17945.PubMedCrossRefGoogle Scholar
  60. Salvesen, G.S., and Dixit, V.M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91: 443–446. Schuler, M., and Green, D.R. Mechanisms of p53–dependent apoptosis. Biochem. Soc. Trans. 2001 Nov; 29 (Pt 6): 684–8.Google Scholar
  61. Shimizu, S., narita, M., and Tsujimoto, Y. (1999). Bel-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483–487.PubMedCrossRefGoogle Scholar
  62. Sprick, M.R., Rieser, E., Stahl, H., Grosse, W.A., Weigand. M.A., and Walczak, H. (2002). Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 21 (17): 4520–30.Google Scholar
  63. Srinivasula, S.M., Datta, P., Fan, X.J., Fernandes, A.T., Huang, Z., and Alnemri, E.S. (2000). Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem. 275 (46): 36152–7.PubMedCrossRefGoogle Scholar
  64. Srinivasula, S.M., Hegde, R., Saleh, A., Datta, P., Shiozaki, E., Chai, J., Lee, R.A., Robbins, P.D., Fernandes, A.T., Shi, Y., and Alnemri (2001). ESA conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410 (6824): 112–6.PubMedCrossRefGoogle Scholar
  65. Stennicke, H.R., Deveraux, Q.L., Humke, E.W., Reed, J.C., Dixit, V.M., and Salvesen, G.S. (1999). Caspase-9 can be activated without proteolytic processing. J. Biol. Chem. 274: 8359–8362.PubMedCrossRefGoogle Scholar
  66. Stennicke, H.R., Jurgensmeier, J.M., Shin, H., Deveraux, Q., Wolf, B.B., Yang, X., Zhou, Q., Ellerby, H.M., Ellerby, L.M., Bredesen, D., Green, D.R., Reed, J.C., Froelich, C.J., and Salvesen, G.S. (1998). Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273 (42): 27084–90.PubMedCrossRefGoogle Scholar
  67. Stennicke, H.R., Jurgensmeier, J.M., Shin, Q.H., Deveraux, B.B., Wolf, X., Yang, Q., Zhou, H.M., Ellerby, L.M., Ellerby, D., Bredesen, D.R., Green, J.C., Reed, C.J., Froelich, G.S. and Salvesen (1998). Pro-caspase-3 Is a Major Physiologic Target of Caspase-8. J. Biol. Chem. 273 27084–27090.PubMedCrossRefGoogle Scholar
  68. Sun, C., Cai, M., Gunasekera, A.H., et al. (1999). NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401: 818–22.PubMedCrossRefGoogle Scholar
  69. Sun, X.M., Bratton, S.B., Butterworth, M., MacFarlane, M., and Cohen, G.M. (2002). Bel-2 and Bcl-xL inhibit CD95–mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J. Biol. Chem. 277 (13): 11345–51.PubMedCrossRefGoogle Scholar
  70. Takahashi, R., Deveraux, Q., Tamm, 1. et al. (1998). A single BIR domain of XIAP sufficient for inhibiting caspases. J. Biol. Chem. 273: 7787–90.PubMedCrossRefGoogle Scholar
  71. Thornberry, N.A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281: 1312–1316.PubMedCrossRefGoogle Scholar
  72. Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T., and Nicholson, D.W. (1997). A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. B.ol. Chem. 272, 17907–17911.CrossRefGoogle Scholar
  73. Tikoo, A., O’Reilly, L., Day, C.L., Verhagen, A.M., Pakusch, M., and Vaux, D.L. (2002). Tissue distribution of Diablo/Smac revealed by monoclonal antibodies. Cell Death Differ 9 (7): 710–6.PubMedCrossRefGoogle Scholar
  74. Vanags, D.M., Porn-Ares, Md., Coppola, S., Burgess, D.H., and Orrenius, S., (1996). Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J. Biol. Chem. 271, pp. 31075–31085.PubMedCrossRefGoogle Scholar
  75. Verhagen, A.M., Coulson, E.J., and Vaux, D.L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome. Biol. 2: 3009.CrossRefGoogle Scholar
  76. Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E., Moritz, R.L., Simpson, R.J., and Vaux, D.L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53.PubMedCrossRefGoogle Scholar
  77. Verhagen, A.M., and Vaux, D.L. (2002). Cell death regulation by the mammalian IAP antagonist Diablo/Smac Apoptosis 7: 163–166.Google Scholar
  78. Vincenz, C., and Dixit, V.M. (1997). Fas-associated death domain protein interleukin-lbeta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95– and p55–mediated death signaling. J. Biol. Chem. 272 (10): 6578–83.PubMedCrossRefGoogle Scholar
  79. Wolter, K.G., Hsu, Y.T., Smith, C.L., Nechushtan, A., Xi, X.G., and Youle, R.J. (1997). Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell. Biol. 139: 1281–1292.PubMedCrossRefGoogle Scholar
  80. Wu, G., Chai, J., Suber, T.L., Wu, J.W., Du, C., Wang, X., and Shi, Y. (2000). Structural basis of IAP recognition by Smac/DIABLO. Nature 408 (6815): 1008–12.PubMedCrossRefGoogle Scholar
  81. Yang, X., Chang, H.Y., and Baltimore, D. (1998). Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281: 1355–1357.PubMedCrossRefGoogle Scholar
  82. Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M., and Horvitz, H.R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–652.PubMedCrossRefGoogle Scholar
  83. Zhang, L., Yu, J., Park, B.H., Kinzler, K.W., and Vogelstein, B. (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290: 989–992.PubMedCrossRefGoogle Scholar
  84. Zhang, X.D., Zhang, X.Y., Gray, C.P., Nguyen, T., and Hersey, P. (2001). Tumor necrosis factor-related apoptosisinducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res. 61 (19): 7339–48.PubMedGoogle Scholar
  85. Zou, H., Li, Y., Liu, X., and Wang, X. (1999). An APAF-1–cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274: 11549–11556.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Shanghai International Joint Cancer InstituteThe Second Military Medical UniversityShanghaiChina
  2. 2.Eppley Cancer InstituteOmahaUSA

Personalised recommendations