Evolutionary Biology pp 27-138

Part of the Evolutionary Biology book series (EBIO, volume 33)

The Evolutionary Origin and Maintenance of Sexual Recombination: A Review of Contemporary Models

  • John A. Birdsell
  • Christopher Wills
Chapter

Abstract

This review is intended to be a global examination of the various hypotheses for the origin and maintenance of genetic recombination and out-crossing, with a look at the surprisingly limited amounts of experimental evidence that has been obtained in order to distinguish among them. It is designed for the reader who wishes an overview of the current state of this large and complex field. However, it is simply not possible to deal in detail with the many competing and complementary hypotheses without turning the review into a book. We apologize in advance to those whose ideas and contributions may have been left out, or may not have been dealt with in the detail that they would like.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achtman, M., Azuma, T., Berg, D. E.,Ito, Y., Morelli, G. Pan, Z.-J., Suerbaun, S., Thompson, S.A., van der Ende, A., and van Doorn, L.-J., 1999, Recombination and clonal groupingsRichards, within Helicobacter pylori from different geographical regions, Mol. Microbiol. 32: 459–470.Google Scholar
  2. Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer S. E., Li, P. W., Hoskins, R. A., Galle, R. F., George, R. A., Lewis, S. E., S., Ashburner, M., Henderson, S. N., Sutton, G. G., Wortman, J. R., Yandell, M. D., Zhang, Q., Chen, L. X., Brandon, R. C., Rogers, Y. H., Blazej, R. G., Champe, M., Pfeiffer, B. D., Wan, K. H., Doyle, C., Baxter, E. G., Helt, G., Nelson, C. R., Gabor Miklos, G. L., Abril, J. F., Agbayani, A., An, H. J., Andrews-Pfannkoch, C., Baldwin, D., Ballew, R. M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E. M., Beeson, K. Y., Benos, P. V., Berman, B. P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M. R., Bouck, J., Brokstein, P, Brottier, E, Burtis, K. C., Busam, D. A., Butler, H., Cadieu, E., Center, A., Chandra, I., Cherry, J. M., Cawley, S., Dahlke, C., Davenport, L. B., Davies, E, de Pablos, B., Delcher, A., Deng, Z., Mays, A. D., Dew, I., Dietz, S. M., Dodson, K., Doup, L. E., Downes, M., Dugan-Rocha, S., Dunkov, B. C., Dunn, E, Durbin, K. J., Evangelista, C. C., Ferraz, C., Ferrier, S., Fleischmann, W., Fosler, C., Gabrielian, A. E., Garg, N. S., Gelbart, W. M., Glasser, K., Glodek, A., Gon, G. F., Gorrell, J. H., Gu, Z., Guan, P., Harris, M., Harris, N. L., Harvey, D., Heiman, T. J., Hernandez, J. R., Houck, J., Hostin, D., Houston, K. A., Howland, T. J., Wei, M. H., Ibegwam, C., Jalali, M., Kalush, R, Karpen, G. H., Ke, Z., Kennison, J. A., Ketchum, K. A., Kimmel, B. E., Kodira, C. D., Kraft, C., Kravitz, S., Kulp, D., Lai, Z., Lasko, E, Lei, Y., Levitsky, A. A., Li, J., Li, Z., Liang, Y., Lin, X., Liu, X., Mattei, B., McIntosh, T. C., McLeod, M. E, McPherson, D., Merkulov, G., Milshina, N. V., Mobarry, C., Morris, J., Moshrefi, A., Mount, S. M., Moy, M., Murphy, B., Murphy, L., Muzny, D. M., Nelson, D. L., Nelson, D. R., Nelson, K. A., Nixon, K., Nusskern, D. R., Pacleb, J. M, Palazzolo, M., Pittman, G. S., Pan, S., Pollard, J., Puri, V., Reese, M. G., Reinert, K., Remington, K., Saunders, R. D., Scheeler, R, Shen, H., Shue, B. C., Siden-Kiamos, I., Simpson, M., Skupski, M. E, Smith, T., Spier, E., Spradling, A. C., Stapleton, M., Strong, R., Sun, E., Svirskas, R., Tector, C., Turner, R., Venter, E., Wang, A. H., Wang, X., Wang, Z. Y., Wassarman, D. A., Weinstock, G. M., Weissenbach, J., Williams, S. M., Woodage, T., Worley, K. C., Wu, D., Yang, S., Yao, Q. A., Ye, J., Yeh, R. F, Zaveri, J. S., Zhan, M., Zhang, G., Zhao, Q., Zheng, L., Zheng, X. H., Zhong, F. N., Zhong, W., Zhou, X., Zhu, S., Zhu, X., Smith, H. O., Gibbs, R. A., Myers, E. W., Rubin, G. M., and Venter, J. C., 2000, The genome sequence of Drosophila melanogaster, Science 287: 2185–2195.Google Scholar
  3. Andersson, D. I., and Hughes, D., 1996, Mullér’s ratchet decreases fitness of a DNA-based microbe, Proc. Natl. Acad. Sci. USA, 93: 906–907.PubMedCrossRefGoogle Scholar
  4. Akrigg, A., and Ayad, S. R., 1970, Studies on the competence-inducing factor of Bacillus subtilis, Biochem. J., 117: 397–403.PubMedGoogle Scholar
  5. Akrigg, A., Ayad, S. R., and Barker, G. R., 1967, The nature of a competence-inducing factorGoogle Scholar
  6. Achtman, M., Azuma, T., Berg, D. E., Ito, Y., Morelli, G., Pan, Z.-J., Suerbaum, S., Thompson, S. A., van der Ende, A., and van Doom, L.-J., 1999, Recombination an in Bacillus subtilis, Biochemical And Biophysical Research Communications, 28: 1062–1067.Google Scholar
  7. Albritton, W. L., Setlow, J. K., Thomas, M., Sottnek, F, and Steigerwalt, A. G., 1984, Heterospecific transformation in the genus Haemophilus, Molecular And General Genetics, 193: 358–363.PubMedCrossRefGoogle Scholar
  8. Andersson, D. I., and Hughes, D., 1996, Muller’s ratchet decreases fitness of a DNA-based microbe. Proc. Natl. Acad. Sci. USA, 93: 906–907.PubMedCrossRefGoogle Scholar
  9. Anker, P., Stroun, M., Gahan, P., Rossier, A., and Greppin, H., 1971, Natural release of bacterial nucleic acids into plant cells and crown gall induction, in: ( L. Ledoux, ed.), International Symposium On Uptake Of Informative Molecules By Living Cells, (pp. 193–200 ). American Elsevier Publishing, Inc., New York.Google Scholar
  10. Bartolomei, M. S., and Tilghman, S. M., 1997, Genomic imprinting in mammals, Ann. Rev. Genet., 31: 493–525.PubMedCrossRefGoogle Scholar
  11. Barton, S. C., Surani, M. A. H., and Norris, M. L., 1984, Role of paternal and maternal genomes in mouse development, Nature, 311: 374–376.PubMedCrossRefGoogle Scholar
  12. Bataillon, T., 2000, Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity, 84: 497–501.PubMedCrossRefGoogle Scholar
  13. Bateman, A. J., 1959, The viability of near-normal irradiated chromosomes, Internat. J. Rad. Biol. 1: 170–180.CrossRefGoogle Scholar
  14. Beach, D. H., and Klar, A. J., 1984, Rearrangements of the transposable mating-type cassettes of fission yeast, EMBO J., 3: 603–610.PubMedGoogle Scholar
  15. Behnke, D., 1981, Plasmid transformation of Streptococcus sanguis (Challis) occurs by circular and linear molecules, Mol. Gen. Genet., 181: 490–497.CrossRefGoogle Scholar
  16. Bell, G., 1982, The Masterpiece of Nature: the evolution and genetics of sexuality, University of California Press, Los Angeles.Google Scholar
  17. Bell, G., 1985, Two theories of sex and variation, Experientia, 41. 1235–1245.PubMedCrossRefGoogle Scholar
  18. Bell, G., 1988a, Sex and Death in Protozoa: The History of an Obsession, Cambridge University Press, Cambridge.Google Scholar
  19. Bell, G., 19886, Uniformity and diversity in the evolution of sex, in The Evolution of Sex, (R. E. Michod and B. R. Levin, eds.), pp.126–138, Sinauer Associates, Inc., Sunderland, Mass.Google Scholar
  20. Bell, G., 1993, The sexual nature of the eukaryote genome, J. Hered., 84: 351–359.PubMedGoogle Scholar
  21. Bengtsson, B. 0., 1985, Biased gene conversion as the primary function of recombination, Genetical Research, 47: 771–780.Google Scholar
  22. Bengtsson, B. 0., 1990, The effect of biased conversion on the mutation load, Genet. Res., 55: 183–187.Google Scholar
  23. Bengtsson, B. 0., 1992, Deleterious mutations and the origin of the meiotic ploidy cycle, Genetics, 131: 741–744.Google Scholar
  24. Bernstein, C., 1979, Why are babies young? Perspect. Biol. Med., 22: 539–544.PubMedGoogle Scholar
  25. Bernstein, C., 1987, Damage in DNA of an infecting phage T4 shifts reproduction from asexual to sexual allowing rescue of its genes, Genet. Res., 49: 183–189.PubMedCrossRefGoogle Scholar
  26. Bernstein, C., and Bernstein, H., 1991, Aging, Sex, and DNA repair, Academic Press, San Diego.Google Scholar
  27. Bernstein, C., and Chen, D., 1987, Recombinational repair of hydrogen-peroxide induced damages in DNA of phage T4, Mut. Res., 184: 87–98.CrossRefGoogle Scholar
  28. Bernstein, C., and Johns, V., 1989, Sexual reproduction as a response to H202 damage in Schizosaccharomyces pombe, J. B act., 171: 1893–1897.Google Scholar
  29. Bernstein, H., Byerly, H., Hopf, R, and Michod, R., 1985a, DNA repair and complementation: The major factors in the origin and maintenance of sex, in: The Origin and Evolution of Sex ( H. O. Halvorson and A. Monroy, eds.) Vol. 7 pp. 29–45, Marine Biological Laboratory, Woods Hole, Massachusetts: Alan R. Liss Inc., New York.Google Scholar
  30. Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1984, Origin of sex. J. Theor. Bio., 110: 323–351.CrossRefGoogle Scholar
  31. Bernstein, H., Byerly, H. C., Hopf, F A., and Michod, R. E., 1985b, The evolutionary role of recombinational repair and sex, Int. Rev. Cyt., 96: 1–28.CrossRefGoogle Scholar
  32. Bernstein, H., Byerly, H. C., Hopf, F. A., and Michod, R. E., 1985c, Gentic damage, mutation, and the evolution of sex, Science, 229: 1277–1281.PubMedCrossRefGoogle Scholar
  33. Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1985d, Sex and the emergence of species, J. Theor. Bio., 117: 665–690.CrossRefGoogle Scholar
  34. Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1987, The molecular basis of the evolution of sex, Adv. Genet., 24: 323–370.PubMedCrossRefGoogle Scholar
  35. Bernstein, H., Byerly, H. C., Hopf, E A., and Michod, R. E., 1988, Is meiotic recombination an adaptation for repairing DNA, producing genetic variation, or both? in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 139–160, Sinauer Associates, Sunderland.Google Scholar
  36. Bernstein, H., Byers, G. S., and Michod, R. E., 1981, Evolution of sexual reproduction: importance of DNA repair, complementation, and variation, Am. Nat., 117 :537–549.Google Scholar
  37. Bertani, G., and Baresi, L., 1987, Genetic transformation in the methanogen Methanococcus voltae PS, J. Bact., 169: 2730–2738.PubMedGoogle Scholar
  38. Bierzychudek, P., 1987, Resolving the paradox of sexual reproduction: A review of experimental tests, in: The Evolution of Sex and its Consequences ( S. C. Stearns, eds.), pp. 163–174, Sinauer Associates, Sunderland.Google Scholar
  39. Birdsell, J., and Wills, C., 1996, Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 93: 908–912.PubMedCrossRefGoogle Scholar
  40. Birky, C. W. Jr., 1978, Transmission genetics of mitochondria and chloroplaste, Ann. Rev. Genet. 12: 471–512.PubMedCrossRefGoogle Scholar
  41. Birky, C. W., and Walsh, J. B., 1988, Effects of linkage on rates of molecular evolution, Proc. Natl. Acad. Sci., USA, 85: 6414–6418.PubMedCrossRefGoogle Scholar
  42. Bodmer, W. F, 1972, The evolution of recombination mechanisms in bacteria, in: Uptake Of Informative Molecules By Living Cells ( L. Ledoux, ed.), pp. 130–139, North-Holland Publishing Company, American Elsevier Publishing Company, Amsterdam, London, New York.Google Scholar
  43. Bowring, F. J., and Catchesise, D. E. A., 1996, Gene conversion alone accounts for more than 90% of recombination events at the am locus of Neurospora crassa, Genetics, 143: 129–136.Google Scholar
  44. Bresler, S. E., 1975, Theory of misrepair mutagenesis, Mut. Res., 29: 467–472.CrossRefGoogle Scholar
  45. Burt, A., and Bell, G., 1987, Mammalian chiasma frequencies as a test of two theories of recombination, Nature, 326: 803–805.PubMedCrossRefGoogle Scholar
  46. Butcher, D., 1995, Muller’s ratchet, epistasis and mutation effects, Genetics, 141: 431–437.PubMedGoogle Scholar
  47. Carlson, C. A., Pierson, L. S., Rosen, J. J., and Ingraham, J. L., 1983, Pseudomonas stutzeri and related species undergo natural transformation, Z Bact., 153: 93–99.Google Scholar
  48. Catlin, W., 1956, Extracellular deoxyribonucleic acid of bacteria and a deoxyribonuclease inhibitor, Science 124: 441–442.PubMedCrossRefGoogle Scholar
  49. Catlin, B. W., 1960, Transformation of Neisseria meningitidis by deoxyribonucleates from cells and from culture slime, J. Bact., 79: 579–590.PubMedGoogle Scholar
  50. Cattanach, B. M., and Kirk, M., 1985a, Differential activity of maternally and paternally derived chromosome regions in mice, Nature, 315: 496–498.PubMedCrossRefGoogle Scholar
  51. Cedar, H., 1988, DNA methylation and gene activity. Cell, 53: 3–4.PubMedCrossRefGoogle Scholar
  52. Chao, L., 1990, Fitness of RNA viruses decreased by Muller’s ratchet, Nature, 348: 454–455.PubMedCrossRefGoogle Scholar
  53. Chao, L., Tran, T., and Matthews, C., 1992, Muller’s ratchet and the advantage of sex in the RNA virus 06, Evolution, 46: 289–299.CrossRefGoogle Scholar
  54. Charlesworth, B., 1978, Model for evolution of Y chromosomes and dosage compensation, Proc. Natl. Acad. Sci. USA, 75: 5618–5622.PubMedCrossRefGoogle Scholar
  55. Charlesworth, D., and Charlesworth, B., 1995, Quantitative genetics in plants: the effect of the breeding system on genetic variability, Evolution 49: 911–920.CrossRefGoogle Scholar
  56. Charlesworth, D., Morgan, M. T., and Charlesworth, B., 1993, Mutation accumulation in finite outbreeding and inbreeding populations, Genet. Res., 61: 39–56.CrossRefGoogle Scholar
  57. Chauvat, F, Astier, C., Vedel, F., and Joset-Espardellier, F, 1983, Transformation in the cyanobacterium Synechococcus R2: improvement of efficiency; role of the pUH24 plasmid, Mol. Gen. Genet., 191:39–45.Google Scholar
  58. Chovnick, A., Ballantyne, G. H., Baillie, D. L., and Holm, D. G., 1970, Gene conversion in higher organisms: Half-tetrad analysis of recombination within the rosy cistron of Drosophila melanogaster, Genetics, 66: 315–329.PubMedGoogle Scholar
  59. Clark, A. G., and Wang, L., 1997, Epistasis in measured genotypes: Drosophila P-element insertions, Genetics, 147: 157–163.PubMedGoogle Scholar
  60. Clarke, D. K., Duarte, E. A., Elena, S. E, Moya, A., Domingo, E., and Holland, J., 1994, The red queen reigns in the kingdom of RNA viruses, Proc. Natl. Acad. Sci. USA, 91: 4821–4824.PubMedCrossRefGoogle Scholar
  61. Cleveland, L. R., 1947, The origin and evolution of meiosis, Science, 105: 287–288.PubMedCrossRefGoogle Scholar
  62. Courtois, J., Courtois, B., and Guillaume, J., 1988, High-frequency transformation of Rhizobium meliloti, J. Bact., 170: 5925–5927.PubMedGoogle Scholar
  63. Cox, E. C., and Gibson, T. C., 1974, Selection for high mutation rates in chemostats, Genetics, 77: 169–184.PubMedGoogle Scholar
  64. Crouse, H., 1960, The controling element in sex chromosome behavior in Sciara, Genetics, 45: 1429–1443.PubMedGoogle Scholar
  65. Crow, J., and Kimura, M., 1965, Evolution in sexual and asexual populations, Am. Nat., XCIX: 439–450.Google Scholar
  66. Crow, J., and Kimura, M., 1969, Evolution in sexual and asexual populations: a reply, Am. Nat. 103: 89–91.Google Scholar
  67. Crow, J. E, and Kimura, M., 1970, An Introduction To Population Genetics Theory, Harper and Row, New York.Google Scholar
  68. Cummings, D. J., MacNeil, I. A., Domenico, J., and Matsuura, E. T., 1985, Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. DNA sequence analysis of three unique “plasmids”, J. Mol. Bio. 185: 659–680.Google Scholar
  69. Cupples, D. A., Van Etten, J. L., Burbank, D. E., Lane, L. C., and Vidaver, A. K., 1980, In vitro translation of three bacteriophage 46 RNAs, J. Virology, 35: 249–251.Google Scholar
  70. Daly, M. J., and Minton, K. W., 1995, Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans, J. Bact., 177: 5495–5505.PubMedGoogle Scholar
  71. Davies, E. K., Peters, A. D., and Keightley, P. D., 1999, High frequency of cryptic deleterious mutations in Caenorhabditis elegans., Science 285: 1748–1751.PubMedCrossRefGoogle Scholar
  72. Davies, P. J., Evans, W. E., and Parry, J. M., 1975, Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae, Mut. Res., 29: 301–314.Google Scholar
  73. Dee, J., 1982, Genetics of Physarum polycephalum, in: Cell Biology Of Physarum and Didymium ( J. W. Daniel, ed.), pp. 211–251, Academic Press, New York.CrossRefGoogle Scholar
  74. Deng, H.-W., and Lynch, M., 1996, Estimation of deleterious-mutation parameters in natural populations, Genetics 144: 349–360.PubMedGoogle Scholar
  75. Deng, H.-W., and Lynch, M., 1997, Inbreeding depression and inferred deleterious mutation parameters in Daphnia, Genetics 147: 147–155.PubMedGoogle Scholar
  76. Dennis, E. S., and Brettell, R. I. S., 1990, DNA methylation of maize transposable elements is correlated with activity, Phil. Trans. R. Soc. Lond., B, 326: 217–229.Google Scholar
  77. Denver, D. R., Morris, K., Lynch, M., Vassilieva, L., and Thomas, W. K., 2000, High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans, Science 289: 2342–2344.PubMedCrossRefGoogle Scholar
  78. De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1996, The effect of sex and dele- terious mutations on fitness in Chlamydomonas Proc. R. Soc. Land., B, 263: 193–200.CrossRefGoogle Scholar
  79. De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1997a, An experimental test for synergistic epistasis and its application in Chlamydomonas, Genetics, 145: 815–819.PubMedGoogle Scholar
  80. De Visser, J. A. G. M., Hoekstra, R. E, and van den Ende, H., 1997b, Test of interaction between genetic markers that affect fitness in Aspergillus niger, Evolution, 51: 1499–1505.CrossRefGoogle Scholar
  81. Doerfler, W., Hoeveler, A., Weisshaar, B., Dobrzanski, E, Knebel, D., Langner, K., Achten, S., and Muller, U., 1989, Promoter Inactivation or inhibition by sequence-specific methyla-tion and mechanisms of reactivation, Cell Biophysics, 15: 21–27.PubMedGoogle Scholar
  82. Dougherty, E. C., 1955, Comparative evolution and the origin of sexuality, Syst. Zool., 4: 145–190.Google Scholar
  83. Drake, J. W., 1974, The role of mutation in bacterial evolution, Symp. Soc. Gen. Microbiol., 24: 41–58.Google Scholar
  84. Drake, J. W.. 1999, The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes, Ann. N. Y. Acad. Sci., 18: 100–107.CrossRefGoogle Scholar
  85. Drake, J. W., and Holland, J. J., 2000, Mutation rates among RNA viruses, Proc. Natl. Acad. Sci. USA, 96:13, 910–13, 913.Google Scholar
  86. Duarte, E., Clarke, D., Domingo, E., and Holland, J.,1992, Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet, Proc. Nad. Acad. Sci. USA, 89: 6015–6019.Google Scholar
  87. Dubnau, D., 1991, Genetic competence in Bacillus subtilis, Microbiol. Rev., 55: 395–424.PubMedGoogle Scholar
  88. Dubnau, D., 1999, DNA uptake in bacteria. Ann. Rev. Microbiol., 53: 217–244.CrossRefGoogle Scholar
  89. Durand, J., Birdsell, J. A., and Wills, C., 1993, Pleiotropic effects of heterozygosity at the mating-type locus of the yeast Saccharomyces cerevisiae on repair, recombination, and transformation, Mut. Res., 290: 239–247.CrossRefGoogle Scholar
  90. Dybdahl, M. F., and Lively, C. M., 1995, Diverse, endemic and polyphyletic clones in mixed populations of the freshwater snail Potamopyrgus antipodarum, J. Evol. Bio., 8: 385–398.CrossRefGoogle Scholar
  91. Dybdahl, M. F., and Lively, C. M., 1998, Host-parasite coevolution: Evidence for rare advantage and time-lagged selection in a natural population, Evolution, 52: 1057–1066.CrossRefGoogle Scholar
  92. Eigen, M., Gardiner, W., Schuster, P., and Winkler-Oswatitsch, R., 1981, The origin of genetic information, Sci. Am., 244: 88–119.PubMedCrossRefGoogle Scholar
  93. Elena, S. E, and Lenski, R. E., 1997, Test of synergistic interactions among deleterious mutations in bacteria, Nature, 390: 395–398.PubMedCrossRefGoogle Scholar
  94. Eshel, I., and Feldman, M. W., 1970, On the evolutionary effects of recombination, Theor. Pop. Bio., 1: 88–100.CrossRefGoogle Scholar
  95. Esposito, M. S., and Wagstaff, J. E., 1981, Mechanisms of mitotic recombination, in: The Molecular Biology of the Yeast Saccharomyces ( J. Strathern, E. Jones, and J. Broach, eds.), pp. 341–370, Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  96. Eyre-Walker, A., and Keightley, P. D., 1999, High genomic deleterious mutation rates in hominids, Nature 397: 344–347.PubMedCrossRefGoogle Scholar
  97. Fabre, R, and Roman, H., 1977, Genetic evidence for inducibility of recombination competence in yeast, Proc. Natl. Acad. Sci. USA, 74: 1667–1671.PubMedCrossRefGoogle Scholar
  98. Felkner, I. C., and Wyss, 0., 1964, A substance produced by competent Bacillus cereus 569 cells that affects transformability, Biochem. & Biophys. Res. Comm., 16: 94–99.CrossRefGoogle Scholar
  99. Felsenstein, J., 1974, The evolutionary advantage of recombination, Genetics, 78:737–756. Felsenstein, J., 1988, Sex and the evolution of recombination, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 74–86, Sinauer and Associates, Sunderland.Google Scholar
  100. Fisher, R. A., 1930, The Genetical Theory of Natural Selection, Clarendon Press, Oxford.Google Scholar
  101. Fisher, R. A., 1935, The sheltering of lethals, Am. Nat., 69: 446–455.CrossRefGoogle Scholar
  102. Fogel, S., and Hurst, D. D., 1963, Coincidence relations between gene conversion and mitotic recombination in Saccharomyces, Genetics, 48: 321–328.PubMedGoogle Scholar
  103. Friedberg, E. C., 1988, Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae, Microbio. Rev., 52: 70–102.Google Scholar
  104. Friis, J., and Roman, H., 1968, The effect of the mating-type alleles on intragenic recombination in yeast, Genetics, 59: 33–36.PubMedGoogle Scholar
  105. Frischer, M. E., Thurmond, J. M., and Paul, J. H., 1990, Natural plasmid transformation in a high-frequency-of-transformation marine Vibrio strain, App. Environ. Microbiol., 56: 3439–3444.Google Scholar
  106. Fry, J. D., Keightley, P. D., Heinsohn, S. L., and Nuzhdin, S. V., 1999, New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 96: 574–579.PubMedCrossRefGoogle Scholar
  107. Futuyma, D. J., 1986, Evolutionary Biology, Sinauer Associates, Sunderland.Google Scholar
  108. Gabriel, W., Lynch, M., and Burger, R., 1993, Muller’s ratchet and mutational meltdowns, Evolution, 47: 1744–1757.CrossRefGoogle Scholar
  109. Garcia-Dorado, A., 1997, The rate and effects distribution of viability mutation in Drosophila: minimum distance estimation. Evolution, 51: 1130–1139.CrossRefGoogle Scholar
  110. Ghiselin, M. T., 1974, The Economy of Nature and the Evolution of Sex, University of California Press, Berkeley.Google Scholar
  111. Giannelli, E, Anagnostopoulos, T., and Green, P. M., 1999, Mutation rates in humans. II. Sporadic mutation-specific rates and rate of detrimental human mutations inferred from Hemophilia B, Am. J. Hum. Genet., 65: 1580–1587.PubMedCrossRefGoogle Scholar
  112. Giannelli, E, and Green, P. M., 2000, The X chromosome and the rate of deleterious mutations in humans, Am. J. Hum. Genet., 67: 515–517.PubMedCrossRefGoogle Scholar
  113. Gibson, T. C., Scheppe, M. L., and Cox, E. C., 1970, Fitness of an Escherichia coli mutator gene, Science, 169: 686–688.PubMedCrossRefGoogle Scholar
  114. Gillin, E D., and Nossal, N. G., 1976, Control of mutation frequency by bacteriophage T4 DNA polymerase: I. The CB120 antimutator DNA polymerase is defective in strand displacement, J. Biol. Chem., 251: 5219–5224.PubMedGoogle Scholar
  115. Goldberg, I. D., Gwinn, D. D., and Thorne, C. B., 1966, Interspecies transformation between Bacillus subtilis and Bacillus licheniformis, Biochem. & Biophys. Res. Comm., 23: 543–548.CrossRefGoogle Scholar
  116. Goodgal, S. H., 1982, DNA uptake in Haemophilus transformation, Ann. Rev. Genet., 16: 169–192.PubMedCrossRefGoogle Scholar
  117. Goodman, S. D., and Scocca, J. J., 1988, Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. USA, 85: 6982–6986.PubMedCrossRefGoogle Scholar
  118. Griffiths, A. J. E, Gelbart, W. M., Miller, J. H., and Lewontin, R. C., 1999, Modern Genetic Analysis, W. H. Freeman & Co., New York.Google Scholar
  119. Grigorieva, G., and Shestakov, S., 1982, Transformation in the cyanobacterium Synechosystis sp. 6803, FEMS Microbiol. Lett., 13: 367–370.Google Scholar
  120. Gromkova, R., and Goodgal, S., 1979, Transformation by plasmid and chromosomal DNAs Haemophilus parainfluenzae, Biochem. and Biophys. Res. Comm., 88: 1428 1434.Google Scholar
  121. Guenther, C., 1906, Darwinism and the Problems of Life. A Study of Familiar Animal Life (McCabe, J., Trans.), A. Owen publishing, London.CrossRefGoogle Scholar
  122. Haas, R., Meyer, T. F., and van Putten, J. M. P., 1993, Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis, Mol. Microbiol., 8: 753–760.PubMedCrossRefGoogle Scholar
  123. Hadchouel, M., Farza, H., Simon, D., Tiollais, E, and Pourcel, C., 1987, Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation, Nature, 329: 454–456.PubMedCrossRefGoogle Scholar
  124. Haigh, J.,1978, The accumulation of deleterious genes in a population-Muller’s ratchet, Theor. Pop. Bio., 14: 251–267.Google Scholar
  125. Hamilton, W. D., Axelrod, R., and Tanese, R., 1990, Sexual reproduction as an adaptation to resist parasites (a review), Proc. Natl. Acad. Sci. USA, 87: 3566–3573.PubMedCrossRefGoogle Scholar
  126. Hanley, K. A., Fisher, R. N., and Case, T. J., 1995, Lower mite infestations in an asexual gecko compared with its sexual ancestors, Evolution, 49: 418–426.CrossRefGoogle Scholar
  127. Hansen, M. T., 1978, Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans, J. Bact., 134: 71–75.PubMedGoogle Scholar
  128. Hare, J. T., and Taylor, J. H., 1989, Methylation in eucaryotes influences the repair of G/T and A/C DNA basepair mismatches, Cell Biophys., 15: 29–40.PubMedGoogle Scholar
  129. Harris, E. H., 1989 The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory UseAcademic Press, San Diego.Google Scholar
  130. Harsojo, S., Kitayama, S., and Matsuyama, A., 1981, Genome multiplicity and radiation resistance in Micrococcus radiodurans, J. Biochem. (Tokoyo) 90: 877–880.Google Scholar
  131. Heller, R., and Maynard Smith, J., 1979, Does Muller’s ratchet work with selfing? Genet. Res., 32: 289–293.CrossRefGoogle Scholar
  132. Henaut, A., and Luzzati, M., 1972, Controle de l’aptitude a recombiner pendant la phase vegetative chez Saccharomyces cerevisiae, Mol. Gen. Genet., 116: 26–34.Google Scholar
  133. Herskowitz, I., 1988, Life cycle of the budding yeast Saccharomyces cerevisiae, Microbiol. Rev., 52: 536–553.Google Scholar
  134. Hickey, D., and Rose, M., 1988, The role of gene transfer in the evolution of eukaryotic sex, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 161–175, Sinauer Associates, Sunderland.Google Scholar
  135. Hickey. D. A., 1982, Selfish DNA: A sexually-transmitted nuclear parasite, Genetics, 101: 519–531.Google Scholar
  136. Hickey, D. A., 1993, Molecular symbionts and the evolution of sex, J. Hered., 84:410–414. Hill, W. G., and Robertson, A., 1966, The effect of linkage on limits to artificial selection, Genet. Res. 8: 269–294.Google Scholar
  137. Hoelzer, M. A., and Michod, R. E., 1991, DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA, Genetics, 128: 215–223.Google Scholar
  138. Hofer, F., 1985, Transfer of lactose-fermenting ability in Lactobacillus lattis, N. Z. J. Dairy Sci. Tech., 20: 179–183.Google Scholar
  139. Holbeck, S. L., and Strathern, J. N., 1997, A role for REV3 in mutagenesis during double-strand break repart in Saccharomyces cerevisiae, Genetics, 147: 1017–1024.PubMedGoogle Scholar
  140. Holbeck, S. L., and Strathern, J. N., 1999, EXOI of Saccharomyces cerevisiae functions in muta-genesis during double-strand break repair, Ann. N. Y. Acad. Sci., 18: 375–377.Google Scholar
  141. Holland, J., de la Torre, J. C., Clarke, D. K., and Duarte, E., 1991, Quantitation of relative fitness and great adaptibility of clonal populations of RNA viruses. J. Virology, 65: 2960–2967.PubMedGoogle Scholar
  142. Holliday, R., 1964, A mechanism for gene conversion in fungi, Genet. Res., 5:282–304. Holliday, R., 1984, The biological significance of meiosis, in: Controlling Events in Meiosis ( G. D. Evans, ed.), Cambridge University Press, Cambridge.Google Scholar
  143. Holliday, R., 1987. X-chromosome reactivation, Nature, 327: 661–662.PubMedCrossRefGoogle Scholar
  144. Holliday, R., 1988, A possible role for meiotic recombination in germline reprogramming and maintenance, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 45–55, Sinauer Associates, Sunderland.Google Scholar
  145. Holliday, R., 1989a, A different kind of inheritance, Sci. Am., 260: 60–73.PubMedCrossRefGoogle Scholar
  146. Holliday, R., 1989b, DNA methylation and epigenetic mechanisms, Cell Biophys., 15:15–20. Hopf, F. A., Michod, R. E., and Sanderson, M. J., 1988, The effect of the reproductive system on mutation load, Theor. Pop. Bio., 33: 243–265.Google Scholar
  147. Hopwood, D. A., and Wright, H. M., 1972, Transformation in Thermoactinomyces vulgaris, J. Gen. Microbiol., 71: 383–398.Google Scholar
  148. Hoy, C. A., Fuscoe, J. C., and Thompson, L. H., 1987, Recombination and ligation of transfected DNA in CHO mutant EM9, which had high levels of sister chromatid exchange, Mol. & Cell. Bio., 7: 2007–2011.Google Scholar
  149. Ito, M., Fukuoda, Y., and Murata, K., 1983, Transformation of intact yeast cells treated with alkali cations, J. Bact., 153: 163–168.PubMedGoogle Scholar
  150. Jahner, D., Stuhlmann, H., Stewart, C. L., Harbers, K., Lohler, J., Simon, I., and Jaenisch, R., 1982, De novo methylation and expression of retroviral genomes during mouse embryo-genesis, Nature, 298: 623–628.PubMedCrossRefGoogle Scholar
  151. Juni, E., 1974, Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis, App. Microbiol., 27: 16–24.Google Scholar
  152. Juni, E., 1977, Genetic transformation assays for identification of strains of Moraxella urethralis, J. Clin. Microbial., 5: 227–235.Google Scholar
  153. Juni, E., and Heym, G. A., 1980, Transformation assay for identification of psychrotrophic Achromobacters, App. Environ. Microbiol., 40: 1106–1114.Google Scholar
  154. Juni, E., Heym, G. A., and Newcomb, R. D., 1988, Identification of Moraxella bovis by qualitative genetic transformation and nutritional assays, App. Environ. Microbiol., 54: 1304–1306.Google Scholar
  155. Juni, E., and Janik, A., 1969, Transformation of Acinetobacter calcoaceticus (Bacterium anitra-turn), J. Bact., 98: 281–288.PubMedGoogle Scholar
  156. Kawano, S., Takano, H., Mori, K., and Kuroiwa, T., 1991, A mitochondrial plasmid that promotes mitochondrial fusion in Physarum polycephalum. Protoplasma, 160: 167–169.CrossRefGoogle Scholar
  157. Keightley, P. D., 1994, The distribution of mutation effects on viability in Drosophila melanogaster, Genetics 138: 1315–1322.PubMedGoogle Scholar
  158. Keightley, P. D., 1998, Inference of genome-wide mutation rates and distribution of mutation effects for fitness traits: A simulation study, Genetics, 150: 1283–1293.PubMedGoogle Scholar
  159. Keightley, P. D., and Bataillon, T. M., 2000, Multigeneration maximum-likelihood analysis applied to mutation-accumulation experiments in Caenorhabditis elegans, Genetics, 154: 1193–1201.PubMedGoogle Scholar
  160. Keightley, P. D., and Caballero, A., 1997, Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA, 94: 3823–3827.PubMedCrossRefGoogle Scholar
  161. Keightley, P. D., and Eyre-Walker, A., 1999, Terumi Mukai and the riddle of deleterious mutation rates, Genetics 153: 515–523.PubMedGoogle Scholar
  162. Keightley, P. D., and Eyre-Walker, A., 2000, Deleterious mutation and the evolution of sex, Science 290: 331–333.PubMedCrossRefGoogle Scholar
  163. Keightley, P. D., and Eyre-Walker, A., 2001, Resonse to Kondrashov, Trends in Genetics, 17: 77–78.PubMedCrossRefGoogle Scholar
  164. Kersulyte, D., Chalkauskas, H., and Berg, D. E., 1999, Emergence of recombinant strains of Helicobacter pylori during human infection, Mol. Microbiol. 31: 31–43.PubMedCrossRefGoogle Scholar
  165. Kibota, T. T., and Lynch, M., 1996, Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381: 694–696.CrossRefGoogle Scholar
  166. Klar, A. J. S., and Bonaduce, M. J., 1993, The mechanism of fission yeast mating-type inter-conversioni: evidence for two types of epigenetically inherited chromosomal imprinting events, Cold Spring Harbor Symp. Quant. Bio., 58: 457–465.CrossRefGoogle Scholar
  167. Kondrashov, A. S., 1982, Selection against harmful mutations in large sexual and asexual populations, Genet. Res., 40: 325–332.PubMedCrossRefGoogle Scholar
  168. Kondrashov, A. S., 1988, Deleterious mutations and the evolution of sexual reproduction, Nature., 336: 435–440.PubMedCrossRefGoogle Scholar
  169. Kondrashov, A. S.,1993, Classification of hypotheses on the advantage of amphimixis,J. tiered., 84: 372–387.Google Scholar
  170. Kondrashov, A. S., 1994c, Muller’s ratchet under epistatic selection, Genetics, 136: 1469 1473.Google Scholar
  171. Kondrashov, A. S., 1998, Measuring spontaneous deleterious mutation process, Genetica, 102 /103: 183–197.PubMedCrossRefGoogle Scholar
  172. Kondrashov, A. S., 2001, Sex and U, Trends in Genetics, 17: 75–77.PubMedCrossRefGoogle Scholar
  173. Kowalski, S., and Laskowski, W., 1975, The effect of three rad genes on survival, inter-and intragenic mitotic recombination in Saccharomyces, Mol. & Gen. Genet., 136: 75–86.CrossRefGoogle Scholar
  174. Koyama, Y, Hoshino, T., Tomizuka, N., and Furukawa, K., 1986, Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp, J Bact, 166: 338–340.PubMedGoogle Scholar
  175. Kruger, D. H., Schroeder, C., Santibanez-Koref, M., and Reuter, M., 1989, Avoidance of DNA methylation: a virus-encoded methylase inhibitor and evidence for counterselection of methylation recognition sites in viral genomes, Cell Biophys., 15: 87–95.PubMedGoogle Scholar
  176. Kunz, B. A., Barclay, B. J., Game, J. C., Little, J. G., and Haynes, R. H., 1980, Induction of mitotic recombination in yeast by starvation for thymine nucleotides, Proc. Natl. Acad. Sci. USA, 77: 6057–6061.PubMedCrossRefGoogle Scholar
  177. Kunz, B. A., and Haynes, R. H., 1981a, DNA repair and mutagenesis in yeast, in: The Molecular Biology of the Yeast Saccharomyces ( J. Strathern, E. Jones, and J. Broach, eds.), pp. 371–414, Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  178. Kunz, B. A., and Haynes, R. H. 1981b, Phenomenology and genetic control of mitotic recombination in yeast. Ann. Rev. Genet., 15: 57–89.PubMedCrossRefGoogle Scholar
  179. Lambert, J. D., and Moran, N. A., 1998, Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria, Proc. Natl. Acad. Sci. USA, 95: 4458–4462.PubMedCrossRefGoogle Scholar
  180. Lang, B. F., Burger, G., O’Kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., and Gray, M. W., 1997, An ancestral mitochondrial DNA resembling a eubacterial genome in miniature, Nature, 387: 493–497.PubMedCrossRefGoogle Scholar
  181. Lemontt, J. F., 1980, Genetic and physiological factors affecting repair and mutagenesis in yeast, in: DNA repair and mutagenesis in eukaryotes ( F. J. de Serres, ed.), pp. 85–120, Plenum Press, New York.CrossRefGoogle Scholar
  182. Li, E., Beard, C., and Jaenisch, R., 1993, Role for DNA methylation in genomic imprinting, Nature, 366: 362–365.PubMedCrossRefGoogle Scholar
  183. Linz, B., Schenker, M., Zhu, P., and Achtman, M., 2000, Frequent interspecific genetic exchange between commensal neisseriae and Neisseria meningitides, Mol. Microbiol., 36: 1049–1058.PubMedCrossRefGoogle Scholar
  184. Lively, C., Craddock, C., and Vrijenhoek, R., 1990, Red queen hypothesis supported by parasitism in sexual and clonal fish, Nature, 344: 864–866.CrossRefGoogle Scholar
  185. Lorenz, M. G., Gerjets, D., and Wackernagel, W., 1991, Release of transforming plasmid and chromosomal DNA from two cultured soil bacteria, Arch. Microbial., 156: 319–326.CrossRefGoogle Scholar
  186. Lorenz, M. G., and Wackernagel, W., 1993, Transformation as a mechanism for bacterial gene transfer in soil and sediment—studies with a sand/clay microcosm and the cyanobacterium Synechocystis OL50, in: Trends In Microbial Ecology ( R. Guerrero and C. PedrosAlio, eds.), pp. 325–330, Spanish Society For Microbiology, Barcelona.Google Scholar
  187. Lorenz, M. G., and Wackernagel, W., 1994, Bacterial gene transfer by natural genetic transformation in the environment, Microbial. Rev., 58: 563–602.Google Scholar
  188. Lynch, M., and Blanchard, J. L., 1998, Deleterious mutation accumulation in organelle genomes, Genetica, 102 /103: 29–39.PubMedCrossRefGoogle Scholar
  189. Lynch, M., Burger, R., Butcher, D., and Gabriel, W., 1993, The mutational meltdown in asexual populations, J. Hered., 84: 339–344.PubMedGoogle Scholar
  190. Lynch, M., and Gabriel, W., 1990, Mutation load and the survival of small populations, Evolution, 44: 1725–1737.CrossRefGoogle Scholar
  191. Kibota, T., and Lynch, M., 1996, Estimate of the genomic mutation rate deleterious to overall fitness in E. coli, Nature, 381: 694–696.PubMedCrossRefGoogle Scholar
  192. Magni, G. E., 1963, The origin of spontaneous mutations during meiosis, Proc. Natl. Acad. Sci. USA, 50: 975–980.PubMedCrossRefGoogle Scholar
  193. Magni, G. E., and von Borstel, R. C., 1962, Different rates of spontaneous mutation during mitosis and meiosis in yeast, Genetics 47: 1097–1108.PubMedGoogle Scholar
  194. Margulis, L., 1981, Symbiosis in Cell Evolution, W. H. Freeman and Company, San Francisco. Margulis, L., and Sagan, D., 1984, Evolutionary origins of sex, in: Oxford Surveys in Evolutionary Biology (R. Dawkins and M. Ridley, eds.), pp. 16–47, Oxford University Press, London.Google Scholar
  195. Margulis, L., and Sagan, D., 1985, Origins of Sex, Yale University Press, New Haven. Margulis, L., Sagan, D., and Olendzenski, L., 1985, What is sex? in: The Origin and Evolution of Sex (H. O. Halvorson and A. Monroy, eds.), pp. 69–85, Marine Biological Laboratory, Woods Hole, Alan R. Liss Inc., New York.Google Scholar
  196. Mathis, L. S., and Scocca, J. J., 1982, Haemophilus influenzae and Neisseria gonorrhoeae recognize different specificity determinants in the DNA uptake step of genetic transformation, J. Gen. Microbiol., 128: 1159–1161.Google Scholar
  197. Mattimore, V., and Battista, J. R.,1996, Radioresistance of Deinococcus ragiodurans: Functions necesary to survive ionizing radiation are also necessary to survive prolonged desiccation, J. Bact, 178: 633–637.Google Scholar
  198. Matzke, M., and Matzke, A. J. M., 1993, Genomic imprinting in plants: parental effects and trans-inactivation phenomena, Ann. Rev. Plant Phys. & Plant Mol. Bio., 44: 53–76.CrossRefGoogle Scholar
  199. Maynard Smith, J., 1968, Evolution in sexual and asexual populations, Am. Nat. 102:469–473. Maynard Smith, J., 1971, What use is sex? J. Theor. Biol., 30: 319–335.CrossRefGoogle Scholar
  200. Maynard Smith, J., 1978, The Evolution of Sex, Canbridge University Press, Cambridge. Maynard Smith, J., 1988, The evolution of recombination, in: The Evolution of Sex (R. E.Google Scholar
  201. Michod and B. R. Levin, eds.) pp. 106–125, Sinauer and Associates, Sunderland. Maynard Smith, J., and Smith, N. H., 1998, Detecting recombination from gene trees, Mol. Biol. Evo1.,15:590–599.Google Scholar
  202. McClain, M. E., and Spendlove, R. S., 1966, Multiplicity reactivation of reovirus particles after exposure to ultraviolet light, J. Bact., 92: 1422–1429.PubMedGoogle Scholar
  203. McGill, C. B., Holbeck, S. L., and Strathern, J. N.,1998, The chromosomal bias of misincorporation during double-strand break repair is not altered in mismatch repair-defective strains of Saccharomyces cerevisiae, Genetics 148:1525–1533.Google Scholar
  204. McGrath, J., and Solter, D., 1984, Completion of mouse embryogenesis requires both the maternal and paternal genomes, Cell, 37: 179–183.PubMedCrossRefGoogle Scholar
  205. Melzer, A. L., and Koeslag, J. H., 1991, Mutations do not accumulate in asexual isolates capable of growth and extinction-Muller’s ratchet re-examined, Evolution, 45: 649–655.CrossRefGoogle Scholar
  206. Mereschkovsky, C., 1905, Le plante consideree comme une complex symbiotique, Bulletin Societe Science Naturelle, Ouest, 6: 17–98.Google Scholar
  207. Metzenberg, R. L., and Glass, N. L., 1990, Mating type and mating strategies in Neurospora, BioEssays 12: 53–59.CrossRefGoogle Scholar
  208. Mevarech, M., and Werczberger, R., 1985, Genetic transfer in Halobacterium volcanii, J. Bact., 162: 461–462.Google Scholar
  209. Michod, R., 1993, Genetic error, sex, and diploidy, J. Hered., 84: 360–371.PubMedGoogle Scholar
  210. Michod, R. E., 1990, Evolution of sex, Trends Ecol. Evol. 5: 30.Google Scholar
  211. Michod, R. E., and Gayley, T. W., 1992, Masking of mutations and the evolution of sex, Am. Nat., 139: 706–734.CrossRefGoogle Scholar
  212. Michod, R. E., and Levin, B. R., 1988, Introduction, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 1–6, Sinauer Associates, Sunderland.Google Scholar
  213. Michod, R. E., and Long, A., 1995, Origin of sex for error repair. II. Rarity and extreme environments. Theor. Pop. Biol. 47: 56–81.CrossRefGoogle Scholar
  214. Michod, R. E., Wojciechowski, M. E, and Hoelzer, M. A., 1988, DNA repair and the evolution of transformation in the bacterium Bacillus subtilis, Genetics, 118: 31–39.Google Scholar
  215. Miller, S. L., and Orgel, L. E., 1974, The Origins of Life on the Earh (W. D. McElroy and C. P. Swanson, eds.), Prentice-Hall, Englewood Cliffs.Google Scholar
  216. Mongold, J. A., 1992, DNA repair and the evolution of transformation in Haemophilus influenzae, Genetics 132: 893–898.Google Scholar
  217. Monk, M., 1986, Methylation and the X chromosome, BioEssays, 4: 204–208.PubMedCrossRefGoogle Scholar
  218. Monk, M., 1987, Memories of mother and father, Nature, 328: 203–204.PubMedCrossRefGoogle Scholar
  219. Moore, T., and Haig, D., 1991, Genomic imprinting in mammalian development: a parental tug-of-war, Trends Genet., 7: 45–49.PubMedGoogle Scholar
  220. Moran, N. A., 1996, Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria, Proc. Natl. Acad. Sci. USA, 96: 2873–2878.CrossRefGoogle Scholar
  221. Morgan, T. H., 1913, Heredity and Sex, Columbia University Press, New York.Google Scholar
  222. Moritz, C., McCallum, H., Donnellan, S., and Roberts, J. D., 1991, Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei): support for the Red Queen hypothesis, Proc. R. Soc. Lond., B, 244: 145–149.CrossRefGoogle Scholar
  223. Morrison, D. A., Mannarelli, B., and Vijayakumar, M. N., 1982, Competence for transformation in Streptococcus pneumoniae: an inducible high-capacity system for genetic exchange, in: Microbiology (D. Schlessinger, ed.), Am. Soc. Microbiol., Washington, D. C.Google Scholar
  224. Mukai, T., 1964, The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability, Genetics, 50: 1–19.PubMedGoogle Scholar
  225. Mukai, T., and Yamazaki, T., 1964, Position effect of spontaneous mutant polygenes controlling viability in Drosophila melanogaster, Proc. Japan Acad., 40: 840–845.Google Scholar
  226. Mukai, T., 1969, The genetic structure of natural populations of Drosophila melanogaster. VII Synergistic interaction of spontaneous mutant polygenes controlling viability, Genetics, 61: 749–761.PubMedGoogle Scholar
  227. Mukai, T., Chigusa, S. T., Mettler, L. E., and Crow, J. E, 1972, Mutation rate and dominance of genes affecting viability in Drosophila melanogaster, Genetics, 72: 335–355.Google Scholar
  228. Muller, H. J.,1914, A gene for the fourth chromosome of Drosophila, J. Exp. Zoo., 17:325–336.Google Scholar
  229. Muller, H. J.,1918, Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors, Genetics, 3: 422–500.Google Scholar
  230. Muller, H. J., 1932, Some genetic aspects of sex, Am. Nat., 66: 118–138.CrossRefGoogle Scholar
  231. Muller, H. J., 1958, Evolution by mutation, Bull. Am. Math. Soc., 64: 137–160.CrossRefGoogle Scholar
  232. Muller, H. J., 1964, The relation of recombination to mutational advance, Mut. Res., 1: 2–9.CrossRefGoogle Scholar
  233. Nachman, M. W., and Crowell, S. L., 2000, Estimate of the mutation rate per nucleotide in humans, Genetics, 156: 297–304.PubMedGoogle Scholar
  234. Nei, M., 1970, Accumulation of nonfunctional genes on sheltered chromosomes, Am. Nat., 104: 311–322.CrossRefGoogle Scholar
  235. Nevoigt, E., Fassbender, A., and Stahl, U., 2000, Cells of the yeast Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions, Yeast 16: 1107–1110.PubMedCrossRefGoogle Scholar
  236. Niwa, O., and Sugahara, T., 1981, 5-Azacytidine induction of mouse endogenous type C virus and suppression of DNA methylation, Proc. Natl. Acad. Sci. USA, 78: 6290–6294.Google Scholar
  237. Norgard, M. V., and Imaeda, T., 1978, Physiological factors involved in the transformation of Mycobacterium smegmatis, J. Bact., 133: 1254–1262.Google Scholar
  238. Nur, I., Pascale, E., and Furano, A. V., 1989, Demethylation and specific remethylation of the promoter-like reion of the L family of mammalian transposable elements, Cell Biophys., 15: 61–66.PubMedGoogle Scholar
  239. O’Conner, M., Wopat, A., and Hanson, R. S., 1977, Genetic transformation in Methylobacterium organophilum, J. Gen. Microbiol., 98: 265–272.Google Scholar
  240. Ohnishi, 0., 1977, Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenetic mutations, Genetics, 87: 529–545.Google Scholar
  241. Okimoto, R., Macfarlane, J. L., Clary, D. O., and Wolstenholme, D. R., 1992, The mitochondrial genomes of two nematodes, Caenorhanditis eloegans and Ascaris suum, Genetics, 130: 471–498.Google Scholar
  242. Ormerod, J. G., 1988, Natural genetic transformation in Chlorobium, in: Green Photosynthetic Bacteria ( J. M. Olson, J. Ormerod, J. Amesz, E. Stackebrand T, and H. G. Truper, eds.), pp. 315–319, Plenum Press, New York.CrossRefGoogle Scholar
  243. Otto, S. P, and Feldman, M. W., 1997, Deleterious mutations, variable epistatic interactions, and the evolution of recombination, Theor. Pop. Bio., 51: 134–147.CrossRefGoogle Scholar
  244. Ottolenghi, E., and Hotchkiss, R. D., 1960, Appearance of genetic transforming activity in pneumococcal cultures. Science, 132: 1257–1258.PubMedGoogle Scholar
  245. Page, W. J., 1981, Optimal conditions for induction of competence in nitrogen-fixing Azotobacter vinelanii, Can. J. Microbiol., 28: 389–397.Google Scholar
  246. Pakula, R., and Walczak, W., 1963, On the nature of competence of transformable Streptococci, J. Gen. Microbiol., 31. 125–133.PubMedGoogle Scholar
  247. Pickett-Heaps, J. D., 1971, The autonomy of the centriole: fact or fallacy? Cytobios, 3: 205–214.Google Scholar
  248. Pifer, M. L., and Smith, H. O., 1985, Processing of donor DNA during Haemophilus influenzae transformation: analysis using a model plasmid system, Proc. Natl. Acad. Sci. USA, 82: 3731–3735.PubMedCrossRefGoogle Scholar
  249. Redfield, R. J., 1988, Evolution of bacterial transformation: Is sex with dead cells ever better than no sex at all? Genetics, 119: 213–221.PubMedGoogle Scholar
  250. Redfield, R. J., 1993a, Evolution of transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae, Genetics, 133: 755–761.Google Scholar
  251. Redfield, R. J., 1993b, Genes for breakfast: the have-your-cake-and -eat-it-too of bacterial transformation, J. Hered., 84: 400–404.PubMedGoogle Scholar
  252. Redfield, R. J., Schrag, M. R., and Dean, A. M., 1997, The evolution of bacterial transformation: Sex with bad relations, Genetics, 146: 27–38.PubMedGoogle Scholar
  253. Reik, W., Collick, A., Norris, M. L., Barton, S. C., and Surani, M. A., 1987, Genomic imprinting determines methylation of parental alleles in transgenic mice, Nature, 328: 248–254.PubMedCrossRefGoogle Scholar
  254. Resnick, M. A., 1976, The repair of double-strand breaks in DNA: A model involving recombination, J. Theor. Bio., 59: 97–106.CrossRefGoogle Scholar
  255. Reynolds, R., 1987, Induction and repair of closely opposed pyrimidine dimers in Saccharomyces cerevisiae, Mut. Res., 184: 197–207.CrossRefGoogle Scholar
  256. Riggs, A. D., 1989, DNA methylation and cell memory, Cell Biophys., 15: 1–13.PubMedGoogle Scholar
  257. Rodarte-Ramon, U. S., 1972, Radiation induced recombination in Saccharomyces: the genetic control of recombination in mitosis and meiosis, Rad. Res., 49: 148–154.CrossRefGoogle Scholar
  258. Rodarte-Ramone, U. S., and Mortimer, R. K., 1972, Radiation induced recombination in Saccharomyces: isolation and genetic study of recombination deficient mutants, Rad. Res., 49: 133–147.CrossRefGoogle Scholar
  259. Roelants, P., Konvalinkova, V., Mergeay, M., and Lurquin, P. E, 1976, DNA uptake by Streptomyces species, Biochim. Biophys. Acta, 442: 117–122.PubMedCrossRefGoogle Scholar
  260. Rosche, W. A., and Foster, P. L., 2000, Determining mutation rates in bacterial populations, Methods 20: 4–17.PubMedCrossRefGoogle Scholar
  261. Rose, M. R., 1983, The contagion mechanism for the origin of sex, J. Theor. Bio., 101: 137–146.CrossRefGoogle Scholar
  262. Rowlands, R. T., and Turner, G., 1974, Recombination between the extranuclear genes conferring oligomycin resistance and cold sensitivity in Aspergillus nidulans, Mol. Gen. Genet., 133: 151–161.Google Scholar
  263. Rudin, I., Sjostrom, J. E., Lindberg, M., and Philipson, L., 1974, Factors affecting competence for transformation in Staphylococcus aureus, J. Bact., 118: 155–164.Google Scholar
  264. Russell, P. J., 1998, Genetics, Benjamin/Cummings, Menlo Park.Google Scholar
  265. Sagan, C., 1973, Ultraviolet selection pressures on the earliest organisms, J. Theor. Bio., 39: 195–200.CrossRefGoogle Scholar
  266. Sager, R., and Granick, S., 1954, Nutritional control of sexuality in Chlamydomonas reinhardi, J. Gen. Physiol. 37: 729–742.CrossRefGoogle Scholar
  267. Schultz, S. T., Lynch, M., and Willis, J. H., 1999, Spontaneous deleterious mutation in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 96: 393–11398.Google Scholar
  268. Seger, J., and Hamilton, W. D., 1988, Parasites and sex, in: The Evolution of Sex ( R. E. Michod and B. R. Levin, eds.), pp. 176–193, Sinauer and Associates, Sunderland.Google Scholar
  269. Selk, E., and Wills, C., 1997, Mismatch repair and the accumulation of deleterious mutations influence the competitive advantage of MAT (mating type) heterozygosity in the yeast Saccharomyces cerevisiae, Genet. Res. 71: 1–10.CrossRefGoogle Scholar
  270. Shabalina, S. A., Yampolsky, L. Y., and Kondrashov, A. S., 1997, Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection, Proc. Natl. Acad. Sci. USA, 94: 13034–13039.PubMedCrossRefGoogle Scholar
  271. Shah, G. R., and Caufield, P. W., 1993, Enhanced transformation of Streptococcus mutans by modifications in culture conditions, Anal. Biochem., 214: 343–346.Google Scholar
  272. Shaw, R. G., Byers, D. L., and Darmo, E., 2000, Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana, Genetics, 155: 369–378.Google Scholar
  273. Shestakov, S. V., and Khyen, N. T., 1970, Evidence for’genetic transformation in blue-green alga Anacystis nidulans, Mol. Gen. Genet., 107: 372–375.Google Scholar
  274. Simmons, M. J.. and Crow, J. F., 1977, Mutations affecting fitness in Drosophila populations, Ann. Re. Genet.,11: 49–78.Google Scholar
  275. Sinha, R. E, and Iyer, V. N., 1971, Competence for genetic transformation and the release of DNA from Bacillus subtilis, Biochim. Biophys. Acta, 232: 61–71.Google Scholar
  276. Sisco, K. L., and Smith, H. 0., 1979, Sequence-specific DNA uptake in Haemophilus transformation, Proc. Natl. Acad. Sci. USA, 76: 972–976.Google Scholar
  277. Smith, H. O., Gwinn, M. L., and Salzberg, S. L., 1999, DNA uptake signal sequences in naturally transformable bacteria, Res. Microbio1., 150: 603–616.CrossRefGoogle Scholar
  278. Sniegowski, P. D., Gerrish, P. J., Johnson, T., and Shaver, A., 2000, The evolution of mutation rates: separating causes from consequences, BioEssays, 22: 1057–1066.PubMedCrossRefGoogle Scholar
  279. Sniegowski, P. D., Gerrish, P. J., and Lenski, R. E., 1997, Evolution of high mutation rates in experimental populations of E. coli, Nature, 387: 703–705.CrossRefGoogle Scholar
  280. Snustad, D. E, Simmons, M. J., and Jenkins, J. B., 1997, Principles of Genetics, John Wiley & Sons, New York.Google Scholar
  281. Sparling, P. F., 1966, Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance, J Bact., 92: 1364–1371.PubMedGoogle Scholar
  282. Stearns, S. C., 1987, The Evolution of Sex and its Consequences, Sinauer Associates, Sunderland.Google Scholar
  283. Stevens, S. E., and Porter, R. D., 1986, Heterospecific transformation among cyanobacteria, J. Bact., 167: 1074–1–76.Google Scholar
  284. Stewart, G., and Carlson, C. A., 1986, The biology of natural transformation, Ann. Rev. Microbiol., 40: 211–235.Google Scholar
  285. Strathern, J. N., Shafer, B. K., and McGill, C. B., 1995, DNA synthesis errors associated with double-strand-break repair, Genetics, 140: 965–972.PubMedGoogle Scholar
  286. Streips, U. N., and Young, E E., 1971, Mode of action of the competence-inducing factor of Bacillus stearothermophilus, J. Bact., 106: 868–875.PubMedGoogle Scholar
  287. Strobeck, C., Maynard Smith, J., and Charlesworth, B., 1976, The effects of hitchhiking on a gene for recombination, Genetics, 82: 547–558.PubMedGoogle Scholar
  288. Stroun, M., Anker, E, and Auderset, G., 1970, Natural release of nucleic acids from bacteria into plant cells, Nature, 227: 607–608.PubMedCrossRefGoogle Scholar
  289. Stryer, L., 1988, Biochemistry ( 3rd ed. ), W. H. Freeman, New York.Google Scholar
  290. Sturtevant, A. H., and Mather, K., 1938, The interrelations of inversions, heterosis, and recombination, Am. Nat., 72: 447–452.CrossRefGoogle Scholar
  291. Suerbaum, S., and Achtman, M., 1999, Evolution of Helicobacter pylori: the role of recombination, Trends in Microbiology, 7: 182.PubMedCrossRefGoogle Scholar
  292. Suerbaum, S., Maynard Smith, J., Bapumia, K., Morelli, G., Smith, N. H., Kunstmann, E., Dyrek, I., and Achtman, M., 1998, Free recombination within Helicobacter pylori, Proc. Natl. Acad. Sci., USA, 95: 12619–12624.CrossRefGoogle Scholar
  293. Sun, H., Treco, D., Schultes, N. P., and Szostak, J. W., 1989, Double-stranded breaks at an initiation site for meiotic gene conversion, Nature, 338: 87–90.PubMedCrossRefGoogle Scholar
  294. Surani, M. A., Reik, W., and Allen, N. D., 1988, Transgenes as molecular probes for genomic imprinting, Trends Genet., 4: 59–62.PubMedCrossRefGoogle Scholar
  295. Surani, M. A. H., Barton, S. C., and Norris, M. L., 1984, Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis, Nature, 308: 548-550.Google Scholar
  296. Surani, M. A. H., Barton, S. C., and Norris, M. L., 1987, Influence of parental chromosomes on spatial specificity in androgenetic-s parthenogenetic chimeras in the mouse, Nature, 326: 395–397.PubMedCrossRefGoogle Scholar
  297. Swain, J. L., Stewart, T. A., and Leder, P, 1987, Parental legacy determines methylation and expression of an autosomal transgene: A molecular mechanism for parental inprinting, Cell, 50: 719–727.PubMedCrossRefGoogle Scholar
  298. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, E. W., 1983, The double-strand break repair model for recombination, Cell, 33: 25–35.PubMedCrossRefGoogle Scholar
  299. Takahashi, I., and Gibbons, N. E., 1957, Effect of salt concentration on the extracellular nucleic acids of Micrococcus halodenitrificans, Can. J. Microhiol., 3: 687–694.CrossRefGoogle Scholar
  300. Thacker, J., 1989, The use of integrating DNA vectors to analyse the molecular defects in ionising radiation-sensitive mutants of mammalian cells including ataxia telangiectasia, Mut. Res., 220: 187–204.CrossRefGoogle Scholar
  301. Thompson, L. H., Brookman, K. W., Dillehay, L. E., Carrano, A. V., Mazrimas, J. A., Mooney, C. L., and Minkler, J. L., 1982, A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand -break repair, and an extraordinary baseline frequency of sister-chromatid exchange, Mut. Res. 95: 427–440.CrossRefGoogle Scholar
  302. Tilman, D., Wedin, D., and Knops, J., 1996, Productivity and sustainability influenced by bio-diversity in grassland ecosystems, Nature, 379: 7113–720.CrossRefGoogle Scholar
  303. Tirgari, S., and Moseley, B. E. B., 1980, Transformation in Micrococcus radiodurans: measurement of various parameters and evidence for multiple, independently segregating genomes per cell, J. Gen. Microbial., 119: 287–296.Google Scholar
  304. Tomasz, A., 1965, Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria, Nature, 208: 155–159.PubMedCrossRefGoogle Scholar
  305. Tomasz, A., 1966, Model for the mechanism controlling the expression of competent state in Pneumococcus cultures, J. Bact., 91: 1050–1061.PubMedGoogle Scholar
  306. Tomasz, A., and Hotchkiss, R. D., 1964, Regulation of the transformability of Pneumococcal cultures by macromolecular cell products, Proc. Natl. Acad. Sci. LISA, 51: 480–487.CrossRefGoogle Scholar
  307. Trehan, K., and Sinha, U., 1981, Genetic transfer in a nitrogen-fixing filamentous cyanobac- terium, J. Gen. Microbiol. 124: 349–352.Google Scholar
  308. Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M., and Bartolomei, M. S., 1995, A paternal-specific methylation imprint marks the alleles of the mouse H19 gene, Nat. Genet., 9: 407–413.PubMedCrossRefGoogle Scholar
  309. Van Nieuwenhoven, W. H., Hellingwerf, K. J., Venema, G., and Konings, W. N., 1982, Role of proton motive force in genetic transformation of Bacillus subtilis, J. Bact., 151: 771–776.Google Scholar
  310. Van Valen, L., 1973, A new evolutionary law, Evol. Theory, 1: 1–30.Google Scholar
  311. Vassilieva, L. L., and Lynch, M., 1999, The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans, Genetics, 151: 119–129.Google Scholar
  312. Venema, G., 1979, Bacterial transformation, Adv. Microb. Phys., 19: 245–331.CrossRefGoogle Scholar
  313. Wagner, G. P, and Gabriel, W., 1990, Quantitative variation in finite parthenogenetic populations: What stops Muller’s ratchet in the absence of recombination? Evolution, 44: 715–731.CrossRefGoogle Scholar
  314. Wake, C. T., Vernaleone, F., and Wilson, J. H., 1985, Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells, Mol. & Cell. Biol., 5: 2080–2089.Google Scholar
  315. Walker, I., 1978, The evolution of sexual reproduction as a repair mechanism. Part 1. A model for self-repair and its biological implications, Acta Bio., 27: 133–158.Google Scholar
  316. Wang, Y., and Taylor, D. E., 1990, Natural transformation in Campylohacter species, J. Bact., 172: 949–955.PubMedGoogle Scholar
  317. Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., and Weiner, A. M., 1987, Molecular Biology of the Gene ( 4th ed. ), Benjamin Cummings, Menlo Park.Google Scholar
  318. Weismann, A., 1889, Essays upon Heredity and Kindred Biological Problems (E. B. Poulton, S. Schonland, and A. E. Shipley Trans. ). Clarendon Press, Oxford.Google Scholar
  319. West, S. A., Peters, A. D., and Barton, N. H., 1998, Testing for epistasis between deleterious mutations, Genetics, 149: 435–444.PubMedGoogle Scholar
  320. Whitehouse, H. L. K., 1982, Genetic Recombination: Understanding The Mechanisms. Wiley, New York.Google Scholar
  321. Williams, G. C., 1975, Sex and Evolution, Princeton University Press, Princeton.Google Scholar
  322. Williams, G. C., and Mitton, J. B., 1973, Why reproduce sexually? J. Theor. Biol., 39: 545–554.PubMedCrossRefGoogle Scholar
  323. Willis, J. H.. 1993, Effects of different levels of inbreeding on fitness components in Mimulus guttatus, Evolution, 47: 864–876.CrossRefGoogle Scholar
  324. Wilson, V. L., and Jones, P. A., 1983, DNA methylation decreases in aging but not in immortal cells, Science, 220: 1055–1057.PubMedCrossRefGoogle Scholar
  325. Wojciechowski, M. R, Hoelzer, M. A., and Michod, R. E., 1989, DNA repair and the evolution of transformation in Bacillus subtilis. II. Role of inducible repair, Genetics, 121: 411–422.PubMedGoogle Scholar
  326. Worrell, V. E., Nagle, D. P, McCarthy, D., and Eisenbraun, A., 1988, Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg, J. Bact., 170: 653–656.PubMedGoogle Scholar
  327. Wright, S., 1932, The roles of mutation, inbreeding, crossbreeding, and selection in evolution, Proc. XI International Congr. Genet., 1: 356–366.Google Scholar
  328. Wright, S., 1988, Surfaces of selective value revisited, Am. Nat., 131: 115–123.CrossRefGoogle Scholar
  329. Yankofsky, S. A., Gurevich, R., Grimland, N., and Stark, A. A., 1983, Genetic transformation of obligately chemolithotrophic thiobacilli, J. Bact., 153: 652–657.PubMedGoogle Scholar
  330. Zuccotti, M., and Monk, M., 1995, Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation, Nat. Genet., 9: 316–320.Google Scholar
  331. Zeyl, C., Bell, G., and Green, D. M., 1996, Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae, Genetics 143: 1567–1577.PubMedGoogle Scholar
  332. Zeyl, C., and DeVisser, J. A. G. M., 2000, Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae, Manuscript Submitted to Genetics.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • John A. Birdsell
    • 1
  • Christopher Wills
    • 2
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  2. 2.Department of Biology and Center for Molecular GeneticsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations