Learning Ontologies for Domain-Specific Information Retrieval

  • Hele-Mai Haav
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 746)

Abstract

Ontologies are used in information retrieval in order to improve traditional document search methods like keyword-based search or browsing hierarchies of subject categories on the Web. To make it possible to use ontologies for that purpose requires fast automatic or semi-automatic building of formal ontologies that can be processed by a computer. This paper describes a new approach to the automatic discovery of domain-specific ontologies in order to make it possible by intelligent agents to better “understand” the intended meaning of descriptions of objects to be retrieved from different web catalogues. The approach is based on automatic construction of domain-specific ontologies using Natural Language Processing (NLP) and Formal Concept Analysis (FCA). Besides the general framework of the approach, a principal architecture of a prototypical ontology design tool OntoDesign is presented. OntoDesign is a system for automatic construction of formal domain ontologies from given domain-specific texts by using FCA.

Key words

Ontology Formal Concept Analysis Concept Lattice Learning of Concept Structures Information Retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Davey and Priestley 1990]
    Davey, B. A. and Priestley, H. A., Introduction to Lattices and Order, Cambridge University Press, 1990Google Scholar
  2. [Borgida et al 1989]
    Borgida, A. et al, Classic: A structural data model for objects. In ACM SIGMOD International Conference on Management of Data, Portland, USA, 1989Google Scholar
  3. [Decker, et al 1999]
    Decker, S., Erdmann, M., Fensel, D., and Studer, R., Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information. In R. Meersman et al. (eds.): Semantic Issues in Multimedia Systems. Proceedings of DS-8. Kluwer Academic Publisher, Boston, 1999, 351–369.Google Scholar
  4. [Eklund et al 2000] Eklund, P., Groh, B., Stumme, G., and Wille, R., A Contextual-Logic Extension of TOSCANA, In Proc.of the 8th Int. Conference on Conceptual Structures, ICCS 2000, Springer Verlag, 453–467Google Scholar
  5. [Ganter and Wille 1999]
    Ganter, B. and Wille, R., Formal Concept Analysis, Mathematical Foundations, Springer, 1999.Google Scholar
  6. [Ganter 1984]
    Ganter, B., Two Basic Algorithms in Concept Analysis (Preprint 831 ), Darmstadt: Technische Hochschule, 1984Google Scholar
  7. [Godin 1991]
    Godin, R., Missaoui, R., and Alaoui, H., Learning Algorithms Using a Galois Lattice Structure, Proc. of the Third Int. Conference on Tools for Artificial Intelligence, IEEE Computer Society Press, CA, 1991, 22–29Google Scholar
  8. [Godin 1993]
    Godin, R., Missaoui, R., and April, A., Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods, Int. J. Man-Machine Studies,1993, (38): 747–767Google Scholar
  9. [Gruber 1995]
    Gruber, T., Toward Principles for Design of Ontologies Used for Knowledge Sharing, International Journal of Human and Computer Studies, 43 (5/6): 907–928Google Scholar
  10. [Guarino 1998]
    Guarino, N., Formal Ontology and Information Systems, In: N. Guarino (Ed), Formal Ontology in Information Systems, Proc. Of the 1st International Conference, Trento, Italy, June 1998, IOS Press, Amsterdam, 3–15Google Scholar
  11. [Guarino et al 1999]
    Guarino, N., Masolo, C., Vetere, G., OntoSeek: Content-Based Access to the Web, IEEE Intelligent Systems, May/June 1999, 70–80Google Scholar
  12. [Haav and Nilsson 2001]
    Haav, H-M. and Nilsson. J. F., Approaches to Concept Based Exploration of Information Resources, W. Abramowicz and J. Zurada (Eds), Knowledge Discovery for Business Information Systems, Kluwer Academic Publishers, 2001, 89–111Google Scholar
  13. [Helfin and Hendler 2000]
    Helfin, J., and Hendler, J., Dynamic Ontologies on the Web, In: Proceedings of American Association for AI Conference (AAAI-2000), Menlo Park, California, AAAI Press 2000.Google Scholar
  14. [Kim 2001]
    Kim, H., Predicting How Ontologies for Semantic Web Will Evolve, Communications of ACM, 2002, 45 (2): 48–55CrossRefGoogle Scholar
  15. [Kim and Compton 2001]
    Kim, M. and Compton, P., A Web-based Browsing Mechanism Based on Conceptual Structures,, In Proc.of the 9th Int. Conference on Conceptual, Structures, ICCS 2001, CEUR Workshop proceedingsGoogle Scholar
  16. [Maedche and Staab 2000]
    Maedche, A. and Staab, S., Discovering Conceptual Relations from Text. ECAI 2000. Proceedingsof the 14th European Conference on Artificial Intelligence, IOS Press, Amsterdam, 2000Google Scholar
  17. [Maedche and Staab 2001]
    Maedche, A. and Staab, S., Learning Ontologies for the SemanticWeb. IEEE Intelligent Systems, 16(2), March/April 2001. Special Issue on Semantic WebGoogle Scholar
  18. [OIL 2001]
    Ontology Inference Layer, available at http://www.ontoknowledge.org/oil Google Scholar
  19. [Preece at al Preece at al 1999]
    Preece, A. D., Hui, K-J., Gray, W. A., Marti, P., et al, The Kraft arhitecture for knowledge fusion and transformation, In Proc. of 19`h SGES Int. Conference, Springer, 1999Google Scholar
  20. [Priss 2000]
    Priss, U., Lattice-based Information Retrieval“, Knowledge Organization, 2000, 7 (3): 132–142Google Scholar
  21. [Scheich et al 1993]
    Scheich, P., Skorsky, M., Vogt, F., Wachter, C., Wille, R., Conceptual data systems. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and classification. Springer, Berlin-Heidelberg, 72–84.Google Scholar
  22. [Sowa 2000]
    Sowa, J.F., Knowledge Representation, Logical, Philosophical, and Computational Foundations, Brooks/Cole Thomson Learning, 2000.Google Scholar
  23. [Stumme and Maedche 2001]
    Stumme, G. and Maedche, A., FCA-Merge: A Bottom-Up Approach for Merging Ontologies. In: IJCAI ‘01 - Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, USA, August, 1–6, 2001, San Francisco/CA: Morgen Kaufmann, 2001Google Scholar
  24. [Sure 2002]
    Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., and Wenke, D., OntoEdit: Collaborative Ontology Development for the Semantic Web, In: The Semantic Web-ISWC 2002, Proceedings of the First International Semantic Web Conference, Sardinia, Italy, June 9–12, 2002, Springer, 2002, 221–235Google Scholar
  25. [Uschold and Gruninger 1996]
    Uschold, M. and Gruninger, M., Ontologies: Principles, Methods and Applications. The Knowledge Engineering Review, 1996Google Scholar
  26. [Van Heijst 1997]
    Van Heijst, G., Schreiber, A. T., and Wielinga, B. J., Using Explicit Ontologies in KBS Development. International Journal of Human and Computer Studies, 1997 Google Scholar
  27. [Woelk and Tomlinson 1994]
    Woelk, D. and Tomlinson, C., The Infosleuht project: Intelligent Search Management via Semantic Agents. In: Proceedings of the Second World Wide Web Conference ’94:Mosaic and the Web, 1994Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Hele-Mai Haav
    • 1
  1. 1.Institute of Cybernetics at Tallinn Technical UniversityEstonia

Personalised recommendations