Integrated Programmable Underwater Acoustic Biotelemetry System

  • R. S. H. Istepanian


Biomedical telemetry (Biotelemetry) is a special facet of bioinstrumentation, which provides a means for transmitting physiological or biological information from one site to another for data collection. Technically, it refers to systems, which require no mechanical connection. The actual or encoded parameters are usually transmitted via acoustic or radio waves, although light waves have also been used. Biotelemetry studies in the last three decades have permitted many areas of physiological and behavioural monitoring in diverse conditions, both for humans and animals, without the encumbrance and restriction of wires connecting the transmitter and receiver. The most widespread use of biotelemetry is the monitoring of biological information from animals and man. The importance of biotelemetry to basic biological, environmental, and medical research cannot be overstated. For example, the utility to provide real time physiological telemetry monitoring in the hospitals has become widely recognised since the early 1970’s.


Telemetry System Pulse Position Modulation Free Swimming Acoustic Telemetry Very High Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mackay, R.S., (1970). Biomedical Telemetry: Sensing and Transmitting Biological Information from Animals and Man, 2nd Ed., New York: John Wiley.Google Scholar
  2. 2.
    Kimmich, H.P. (1975). ‘Multichannel Biotelemetry-Review’, Biotelemetry, 2, 207–255.Google Scholar
  3. 3.
    Jeutter, D.C., (1983). ‘Overview of Biomedical Telemetry Techniques’, IEEE Eng.In Med.& Biol., 2, 17–24.Google Scholar
  4. 4.
    Kimmich, H.P., (1980) Artifact free measurement of biological parameters, biotelemetry a historical review and layout of modern development, In Handbook Biotelemetry and radio tracking, Amlaner, C.J. and MaCdonald, D.W. (eds.), Pergamon press, N.Y., 3–20.Google Scholar
  5. 5.
    Fryer, T.B. and Sandler, H. (1974), ‘A Review of Implant Telemetry Systems’, Biotelemetry, 1(6), 351–374.Google Scholar
  6. 6.
    Ysenbrandt, H.J.B., Selten, A.J., Koch, T., Kimmich, H.P., (1976). ‘Biotelemetry-Literature Survey of The Past Decade’, Biotelemetry,3, 145–250.Google Scholar
  7. 7.
    Meindel, J.D., and Ford, A.J. (1984). ‘Implantable telemetry in biomedical research’, IEEE Trans. Biomed. Eng., 31, 817–821.CrossRefGoogle Scholar
  8. 8.
    Adrian, E.D. and Ludwig, C. (1938). ‘Nervous Discharge from the olfactory organs of Fish’, J. Physiol., 94, 441–460.Google Scholar
  9. 9.
    Slater, L.E. (ed.) (1965). Biotelemetry, the use of telemetry in animal behaviour and physiology in relation to ecological problems, Pergamon press, New York.Google Scholar
  10. 10.
    Priede, I.G (1980). ‘An analysis of objectives in telemetry studies of fish in the natural environment’, In Handbook on biotelemetry and radiotracking, Amlaner, C.J. and Macdonald, D.W.(eds.), Pergamon press, New York, 105–118.Google Scholar
  11. 11.
    Frank, H.T. (1968). ‘Telemetring of Electrocardiogram of Free Swimming Fish (Salmo Irideus)’, IEEE Trans. Biomed. Eng., 15, 2, 111–114.CrossRefGoogle Scholar
  12. 12.
    Scidmore, A.K., Beyer, J.B., Weiss D., and Guckel, H. (1976). ‘EEG Monitoring of Free Swimming Fish, Biotelemetry’, 3, 227–230.Google Scholar
  13. 13.
    Kudo, Y., Urda, K. (1980). ‘The measurement of the electrical activity of the olfactory bulb in free swimming carp by underwater telemetry system’, IEEE Trans. Biomed. Eng., 27, 694–698.CrossRefGoogle Scholar
  14. 14.
    Wheatherley, A. H., Rogers, S.G., Pincock, D.G., and Patch, J.R.(1982). ‘Oxygen consumption of active rainbow trout derived from electromyograms obtained by radiotelemetry’, J. Fish Biol., 20, 479–498.CrossRefGoogle Scholar
  15. 15.
    Trefethen, P.S., (1956). ‘Sonic equipment for tracking individual fish’, U.S. fish & Wildlife Serv. Spec. Sci., Rep. No.179.Google Scholar
  16. 16.
    Stasko, A.B. (1975). ‘ Underwater biotelemetry,an annotated Bibolography’, Canadian Fish. Mar. Serv. Resour. Dev. Branch Marit. Tech. Rep. Ser. MART-534, Canada, 31pp.Google Scholar
  17. 17.
    Henderson, F. G. and Hasler, A. D. (1966) ‘An Ultrasonic Transmitter for use in the Studies of Movement of Fishes’, Trans. Am. Fish.Soc., 95, 350–356.CrossRefGoogle Scholar
  18. 18.
    Young, A.H., Taylor, P., and Holliday, F.G.(1972). ‘A small sonic tag for the measurement of locomotor behaviour in fish,’ J.Fish Biol., 4., 57–65.CrossRefGoogle Scholar
  19. 19.
    Monan, G.E., and Thorne, D.L. (1973). ‘Sonic tags Attached to ALaska King Crab’, Marine Fisheries Review, 37(2), 9–15.Google Scholar
  20. 20.
    Carey, F.G., and Lawson, K.D.(1973). ‘Temperature regulation in free swimming bluefin tuna’, Comp. Biochem. Physiol., 44, 375–392.CrossRefGoogle Scholar
  21. 21.
    Rubinoff, I., Graham, J.B., and Motta J.(1986). ‘Diving of the Sea Snake (Pelamis Planturus) in the Gulf of Panama: I. Diving Depth and Duration’, Mar. Biol., 91, 181–191.CrossRefGoogle Scholar
  22. 22.
    Wilson, R.P., Grant, W.S., and Duffy, D.C. (1986). ‘Recording devices on free-ranging marine animals’, Ecology, 67, 1091–1093.CrossRefGoogle Scholar
  23. 23.
    Priede, I.G., and Young, A.H. (1977). ‘The ultrasonic telemetry of cardiac rhythms of wild brown trout as an indicator of bio-energies and behaviour’, J. Fish Biol., 10, 229–318.Google Scholar
  24. 24.
    Bottoms, A. and Marlow, J.(1979). ‘A new Ultrasonic Tag for the Telemetry of Physiological Functions from Aquatic Animals’, Mar. Biol., 50, 127–130.CrossRefGoogle Scholar
  25. 25.
    Wardle, C.S., and Kanwisher, J.W. (1973). ‘The significance of heart rate in free swimming Cod (Gadus Morhua): Some observations with ultrasonic tags’, Mar. Behav. Physiol., 2, 311–324.CrossRefGoogle Scholar
  26. 26.
    Rogers, S.C., Weatherley, A.H., Pinckock, D.G., and Patch, J.R. (1981). ‘Telemetry electromyograms and oxygen demands of fish activity’, Proc. 3rd. Int. Conf. Wildl. Biotelemetry, Univ. of Wyoming, Laramie, 141–150.Google Scholar
  27. 27.
    Stasko, A.B., and Horrall, R.M. (1976). ‘Method of counting the tail-beats of free swimming fish by ultrasonic telemetry’, J. Fish Res. Board. Canada, 33, 2596–2598.CrossRefGoogle Scholar
  28. 28.
    Ferrel, D.W., Nelson, D., Standora, T.C., and Carter, H.C. (1974).‘A Multichannel Ultrasonic Biotelemetry System for Monitoring Marine animal Behaviour’, Trans. ISA, 13,120–131.Google Scholar
  29. 29.
    Bjordal, A., Floen, S., Todland, B., and Huse, I.(1986) ‘Monitoring biological and environmental parameters in aquaculture’, Model., Ident. and Control, 7,209–218.CrossRefGoogle Scholar
  30. 30.
    Kanwisher, J., Lawson, K., and Saunders, G. (1974).‘Acoustic telemetry from fish’, Fish. Bullet., 72, 251–255.Google Scholar
  31. 31.
    Braithwaite, H. (1974) ‘Some measurements of acoustic conditions in rivers’, J. Sound & Vib., 37, 557–563.CrossRefGoogle Scholar
  32. 32.
    Meister, R., and St. Laurent, R. (1960) ‘Ultrasonic absorbtion and velocity in water containing algae in suspension’, J. Acous. Soc. Amer., 32, 556–559.CrossRefGoogle Scholar
  33. 33.
    Brumbaugh, D. (1980), ‘Effect of thermal stratification on range of ultrasonic tags’, Underwater telemetry newsletter, 10, 1–4.Google Scholar
  34. 34.
    Urick, R.J., (1975), Principles of underwater sound for engineers’, 2nd. Ed., McGraw-Hill:N.Y.Google Scholar
  35. 35.
    Burt, E.G., and Rigby, L.(1985), ‘Electromagnetic through-water communication’ J. Soc. Underwater Tech., 11, 14–18.Google Scholar
  36. 36.
    Slater, L.E. (ed.), (1965) ‘Biotelemetry’, Oxford: Pergamon Press.Google Scholar
  37. 37.
    Magel, J.R., Mcradle, W.D., and Glaster, R.M.(1969) ‘Telemetred heart rate response to selected competitive swimming events’, J.Applied Physiol., 26, 764–770.Google Scholar
  38. 38.
    Baldwin, H.A.(1965), ‘Marine biotelemetry’, Bioscinece,15, 95–97.CrossRefGoogle Scholar
  39. 39.
    Oka, Y., Utsyama, N., Koda, K., and Kimura, M. (1963) ‘Studies of telemetring on ECG and respiratory movements during running, jumping and swimming’, Med. Elec. Biol.Eng., 1,574–579.CrossRefGoogle Scholar
  40. 40.
    Tucker, D.G., and Bazey, B.K. (1966), ‘Applied underwater acoustic’, Pergamon press:London.Google Scholar
  41. 41.
    Anderson, V.C. (1970). ‘Acoustic communication is better than none’, IEEE Spectrum, 63–68.Google Scholar
  42. 42.
    Frampton, C., Riddle, H.C., and Roberts, J.R. (1976) ‘An ECG telemetry system for physiological studies on swimmers’, Biom. Eng., 11, 87–90.Google Scholar
  43. 43.
    Frampton, C., Riddle, H.C., and Roberts, J.R. and Watson, B.W. (1974), ‘An inductive loop telemetry for recording ECG of a swimmer’, J. Physiol., 241,14–16.Google Scholar
  44. 44.
    Glaser, R.M., and Mcradle, W.D. (1969) ‘A Radiotelemetry Transmitter for Monitoring Heart rate of Human Engaged in Physical Activity’, The Res. Quarter. of The American Assoc. of Health,Physic. Educ. and Recreation, 40(3), 640–642.Google Scholar
  45. 45.
    Jacob, R., Ridde, H.C., and Watson, B.W. (1973) ‘Circuits for searching a signal from a three aerial system during inductive loop telemetry’, Biomed. Eng.,8, 295 – 297.Google Scholar
  46. 46.
    Shcultz, C.W. (1970) ‘Underwater communication using return current density’, Proc. IEEE, 1025–1026.Google Scholar
  47. 47.
    Zweizig, J.R., Adey, W.R., Hanley, J., and Cockett, A.T. (1972) ‘EEG monitoring of a free swimming diver at a working depth of 15m’, Aerospace Med., 43, 403–407.Google Scholar
  48. 48.
    Utsuyama, U., Yamagushi, H., Obara, H., and Miyamato, H.(1988) ‘Telemetry of human electrocardiogram in aerial and aquatic environments’, IEEE Trans. Biomed. Eng., 35., 882–884.CrossRefGoogle Scholar
  49. 49.
    Weltman, G., and Egstrom, G.H. (1969) ‘Heart rate and respiratory response correlation in surface and underwater work’, Aerospace Med., 40, 479–483.Google Scholar
  50. 50.
    Thalman, E.D., Sponholtz, D.K., and Lundgren, C.E. (1976) ‘Chamberbased system for physiological monitoring of Submerged exercising subjects’, Undersea Biomedical Res., 5, 293–300.Google Scholar
  51. 51.
    Lovik, A., Lloyd, J., and Tangen, J.M. (1983) ‘A general system for the physiological diver monitoring’, Proc. IEEE Ocean’83 Conf., 1, 464–466.Google Scholar
  52. 52.
    Pilmanis, A.A., Given, R.R., and Pilmanis, V.M. (1971) ‘Physiological and biological studies from The Hydrolab’, Hydrolab J., 1, 30–42, 1971.Google Scholar
  53. 53.
    Jung, W. and Stolle, W., (1981) ‘Behaviour of Heart Rate and Incident of Arrhythmia in Swimming and Diving’, Biotelemetry, 8, 228–239.Google Scholar
  54. 54.
    Slater, A., and Bellet, S. (1969) ‘An underwater temperature telemetring system’, Med. Biol. Eng., 7, 633–639.CrossRefGoogle Scholar
  55. 55.
    Slater, A., Bellet, S., Kilpatrick, D.G. (1969), ‘Instrumentation for telemetring the electrocardiogram from Scuba Divers’, IEEE Trans. Biom. Eng., 16,148–151.CrossRefGoogle Scholar
  56. 56.
    Kanwisher, J., Lawson, K., and Strauss, R. (1974). ‘Acoustic telemetry from human divers’, Undersea Biom. Res., 1, 99–109.Google Scholar
  57. 57.
    Skutt, R.H., Fell, R., and Hagstrom, E.C. (1971). ‘A Multichannel ultrasonic underwater telemetry system’, Biotelemetry, 1, 30–38.Google Scholar
  58. 58.
    Clay, C.S., and Medwin E. H. (1977). ‘Acoustical Oceanography: principles and applications’, Wiley;N.Y.Google Scholar
  59. 59.
    Berkhovskish, L. and Lysanov, Y. (1982). ‘Fundamentals of ocean acoustics’, Springer-Verlag:N.Y.Google Scholar
  60. 60.
    Flatte, S.M. (ed.) (1979) ‘Sound transmission through a fluctuating ocean’, Cambridge Univ. Press, Cambridge: U.K.Google Scholar
  61. 61.
    Burdic, W.S. (1991). ‘Underwater signal analysis’, Prentice-Hall, 1991.Google Scholar
  62. 62.
    Jensen, F.B., and Kuperman, W.A. (1983). ‘Optimum frequency of, propagation in shallow water environments’, J. Acous. Soc. Amr., 73, 813–816.CrossRefGoogle Scholar
  63. 63.
    Baggeroer, A.B. (1984). ‘Acoustic telemetry-An overview’, IEEE J. Ocean. Eng., 9, 229–235.CrossRefGoogle Scholar
  64. 64.
    Coates, R., and Williams, P. (1987). ‘Underwater acoustic communications: A review and bibliography’, Proc. Inst. Acoust., UK.Google Scholar
  65. 65.
    Ray, C.C. (ed.) (1974), ‘Medical Engineering’, Rev., Year book Medical Publishers, Chicago.Google Scholar
  66. 66.
    Jacobs, I. (1974).‘Practical application of coding’, IEEE Trans. Inf. Theory, 20, 305–310.zbMATHCrossRefGoogle Scholar
  67. 67.
    Pieper, J.F., Proakis, J.A., and Wolf, J.K. (1978). ‘Design of efficient coding and modulation for a Rayleigh fading channels’, IEEE Trans. Inf. Theory, 24, 457–468.zbMATHCrossRefGoogle Scholar
  68. 68.
    Proakis, J. (1983). ‘Digital communications’, McGraw-Hill:N.Y.Google Scholar
  69. 69.
    Viterbi, A.J, and Omura, J.K.(1979).‘Principles of digital communication and coding’, McGraw-Hill:N.Y., 1979.zbMATHGoogle Scholar
  70. 70.
    Tomasi, W. (1992). ‘Advanced electronic communication systems’, 2nd. ed., Prentice-Hall : N.J.Google Scholar
  71. 71.
    Fryer, T.B.(1974) ‘A Multichannel EEG telemetry utilizing a PCM subcarrier’, Biotelemetry, 1, 202–206.Google Scholar
  72. 72.
    Hull, M.L., and Motec, C.D.(1974). ‘PCM telemetry in ski injury research’, Biotelemetry, 1, 182–184.Google Scholar
  73. 73.
    Falahati A. A., Woodward, B. and Bateman, S.C. (1991). ‘Underwater channel models for 4800 b/s QPSK signals’, IEEE J. Ocean. Eng., 18, 12–20.CrossRefGoogle Scholar
  74. 74.
    Mohanty, N. (1987). ‘Phase tarcking error in a fading channel’, Proc. Int. Fed. Telemetry Conf.(iFT), 203–205.Google Scholar
  75. 75.
    Catipovic, J.A. (1990). ‘Performance limitation in underwater acoustic telemetry’, IEEE J. Ocean. Eng., 15, 205–216.CrossRefGoogle Scholar
  76. 76.
    Brock, D.C., Bateman, S.C., and Woodward, B. (1986) ‘Underwater acoustic transmission of low-rate digital data’, Ultrasonics, 24, 183–188.CrossRefGoogle Scholar
  77. 77.
    Andrews, R.S., and Turner, L.F. (1977). ‘On the performance of underwater data transmission system using amplitude-shift-keying techniques’, IEEE Trans. on Sonic and Ultrasonic, 23, 64–71.CrossRefGoogle Scholar
  78. 78.
    Andrews, R.S., and Turner, L.F. (1976) ‘Investigation of amplitude fluctuations of high frequency short-duration pulses propagated under shortrange shallow water environment’, J. Acoust. Soc. Amer., 58, 331–335.CrossRefGoogle Scholar
  79. 79.
    Carden, F. (1990) ‘Design parameters for FM/FM system’, Proc. Int. Telemetering Con. ITC/90, 241–247.Google Scholar
  80. 80.
    Cromwell, L., and Weibeli, F.J.(1980). ‘Biomedical instrumentation and measurement’, Prentice-Hall : N.J.Google Scholar
  81. 81.
    Tompkins, W.J., and Webester, I.G. (eds.) (1982).‘Design of microcomputer-based medical instrumentation’, Prentice-Hall:N.J.Google Scholar
  82. 82.
    Cobbold, R.C. (1974). ‘Transducers for biomedical measurements; principles and applications’, Wiley:N.Y.Google Scholar
  83. 83.
    Geddes, L.A., and Baker, L.E. (1989). Principles of applied biomedical instrumentation, 3rd ed., Wiley:N.Y.Google Scholar
  84. 84.
    Istepanian, R.S.H. (1994). ‘Use of microcontrollers for diver mointoring by underwater acoustic biotelemetery in multipath environments’, Ph.D. dissertation, Loughbrough University, UK.Google Scholar
  85. 85.
    Woodward, B. and Istepanian, R.S.H. (1993) ‘Acoustic Biotelemetry of data from divers’, Proceedings 15th. IEEE Annual International Conference of Engineering in Medicine and Biology, San Diago,USA, 1000–1002.Google Scholar
  86. 86.
    Woodward, B. and ISTEPANIAN, R..H. (1995). ‘The use of Underwater Acoustic Biotelemetry for monitoring of ECG of a swimming patient’, Proceedings of 1 st. Regional Conf. IEEE Engineering in Medicine and Biology Society, New Delhi, India,4, 100–108,1995.Google Scholar
  87. 87.
    Istepanian, R. and Woodward, B. (1997). ‘Microcontroller based ECG underwater telemetry system’, IEEE Trans. Information Technology in Biomedicine, 1,2, 150–154.CrossRefGoogle Scholar
  88. 88.
    Istepanian, R.S.H, and Woodward, B. (1996) ‘Underwater acoustic telemetry of complex analogue signals in a multipath channel’, In Subsea Control and data Acquisition (Andrianssen, L., Phillips, R., Rees C., and Cattanach J. (eds.), Mechanical Engineering Publications Ltd., London, 171–18.Google Scholar
  89. 89.
    Istepanian, R.S.H. and Woodward, B. (1996). ‘Spectral Analysis of Heart Rate Variability during Scuba Diving’, Proceedings 18th. IEEE Annual International Conference of Engineering in Medicine and Biology, Amsterdam, Holland, 430–432.Google Scholar
  90. 90.
    Istepanian, R.S.H. and Woodward, B.(1997). ‘ Use of Neural Networks in Telemedical Underwater Monitoring’, Journal of Telemedicine and Telecare,3, Supp1.1,70–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • R. S. H. Istepanian
    • 1
  1. 1.E-Med Systems and Health Engineering Group, Department of Electronic & Computer EngineeringBrunel UniversityUxbridge, MiddlesexUK

Personalised recommendations