Hypoxia pp 365-376 | Cite as

The pVHL-HIF-1 system

A key mediator of oxygen homeostasis
  • Peter H. Maxwell
  • C. W. Pugh
  • P. J. Ratcliffe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 502)


Matching oxygen consumption and supply represents a fundamental challenge to multicellular organisms. HIF-1 is a transcription complex which is emerging as a key mediator of oxygen homeostasis. HIF-1 controls the expression of many genes, including erythropoietin, angiogenic growth factors, glucose transporters and glycolytic enzymes. The HIF-1 complex, which contains an a and ß subunit (both basic helix-loop-helix proteins of the PAS family) is formed in hypoxia and modulates gene expression through hypoxia response elements. Regulation involves ubiquitin-mediated oxygen-dependent destruction of the alpha subunit. Oxygen-regulated destruction of HIF-α requires the von Hippel Lindau tumour suppressor protein (pVHL). pVHL acts as the recognition component of a ubiquitin E3 ligase complex which binds HIF-oc. Loss of pVHL function, which results in constitutive activation of the hypoxic response, is important in the development of clear cell renal cancer, where both copies of the gene are usually inactivated. The importance of the VHL-HIF system in multicellular organisms is supported by conservation in the nematode C elegans. Understanding the events resulting in HIF activation should provide novel therapeutic targets. This would be useful in preventing angiogenesis in cancers and promoting adaptive changes in hypoxic / ischaemic tissue.


hypoxia-inducible factor-1 von Hippel Lindau transcriptional regulation angiogenesis 


  1. 1.
    Bacon NC, Wappner P, O’Rourke JF, Bartlett SM, Shilo B, Pugh CW and Ratcliffe PJ. Regulation of the Drosophila Basic helix-loop-helix PAS protein Sima by hypoxia: functional evidence for homology with mammalian HIF-1 alpha. Biochem Biophys Res Comm 249, 1998.Google Scholar
  2. 2.
    Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. USA 97: 9082–9087, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D and Keshet E. Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485–490, 1998.PubMedCrossRefGoogle Scholar
  4. 4.
    Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, Ratcliffe PJ, Maher ER. Contrasting effects on HIF-1 a regulation by disease-causing pVHL mutations correlate with patterns of tumorigenesis in von Hippel-Lindau disease. Hum Mol Gen. In press 2001Google Scholar
  5. 5.
    Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ and Maxwell PH. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275: 25733–25741, 2000.PubMedCrossRefGoogle Scholar
  6. 6.
    Elson DA, Ryan HE, Snow JW, Johnson R and Arbeit JM. Coordinate up-regulation of hypoxia inducible factor (HIF)-1α and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 60: 6189–6195, 2000.PubMedGoogle Scholar
  7. 7.
    Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, Emmert-Buck MR, Westphal H, Klausner RD and Linehan WM. Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc. Natl. Acad. Sci. USA 94: 9102–9107, 1997.PubMedCrossRefGoogle Scholar
  8. 8.
    Goldberg MA, Dunning SP and Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242: 1412–1415, 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanahan D and Weinberg RA. The hallmarks of cancer. Cell 100: 57–70, 2000.PubMedCrossRefGoogle Scholar
  10. 10.
    Hankinson O. Single-step selection of clones of a mouse hepatoma line deficient in aryl hydrocarbon hydroxylase. Proc. Natl Acad. Sci. USA 76: 373–376, 1979.PubMedCrossRefGoogle Scholar
  11. 11.
    Huang LE, Gu J, Schau M and Bunn HF. Regulation of hypoxia-inducible factor 1 is mediated by an oxygen-dependent domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95: 7987–7992, 1998.PubMedCrossRefGoogle Scholar
  12. 12.
    Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Jr. and Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl. Acad. Sci. USA 93: 10595–10599, 1996.PubMedCrossRefGoogle Scholar
  13. 13.
    Isaac DD and Andrew DJ. Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev. 10: 103–117, 1996PubMedCrossRefGoogle Scholar
  14. 14.
    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY and Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1Genes Dev. 12: 149–162, 1997.CrossRefGoogle Scholar
  15. 15.
    Jaakkola P, Mole DR, Tian Y-M, Wilson M, Gielbert J, von Kriegsheim A, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the VHL ubiquitylation complex by O2-regulated prolyl hydroxylation. Science in press 2001.Google Scholar
  16. 16.
    Jelkmann W. Erythropoietin: Structure, control of production, and function. Physiol Rev 72: 449–489, 1992PubMedGoogle Scholar
  17. 17.
    Kaelin WG and Maher ER. The VHL tumour-suppressor gene paradigm. Trends Genet. 14: 423–426, 1998.PubMedCrossRefGoogle Scholar
  18. 18.
    Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Kaelin WG, Jr., Elledge SJ, Conaway RC, Harper JW and Conaway JW. Rbxl, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284: 657–661, 1999.PubMedCrossRefGoogle Scholar
  19. 19.
    Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC and Conaway JW. Activation of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. Proc. Natl Acad. Sci. USA 97: 10430–10435, 2000.PubMedCrossRefGoogle Scholar
  20. 20.
    Kung AL, Wang S, Klco JM, Kaelin WG and Livingston DM. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6: 1335–1340, 2000PubMedCrossRefGoogle Scholar
  21. 21.
    Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW and Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342: 626–633, 2000PubMedCrossRefGoogle Scholar
  22. 22.
    Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, Rosenberg RD, Hampton TG, Li J, Sellke F, Carmeliet P and Simons M. PR39, a peptide regulator of angiogenesis. Nature Medicine 6: 49–55, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Maltepe E, Schmidt JV, Baunoch D, Bradfield CA and Simon MC. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386: 403–407, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW and Ratcliffe PJ. Hypoxia inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA 94: 8104–8109, 1997.PubMedCrossRefGoogle Scholar
  25. 25.
    Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJP, Johnson MH and Ratcliffe PJ. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int. 44: 1149–1162, 1993.PubMedCrossRefGoogle Scholar
  26. 26.
    Maxwell PH, Pugh CW and Ratcliffe PJ. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen sensing mechanism. Proc. Natl. Acad. Sci. USA 90: 2423–2427, 1993.PubMedCrossRefGoogle Scholar
  27. 27.
    Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER and Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275, 1999.PubMedCrossRefGoogle Scholar
  28. 28.
    Nagao M, Ebert BL, Ratcliffe PJ and Pugh CW. Drosophila melanogaster SL2 cells contain a hypoxically inducible DNA binding complex which recognises mammalian HIF-1 binding sites. FEBS Lett. 387: 161–166, 1996.PubMedCrossRefGoogle Scholar
  29. 29.
    O’Rourke JF, Pugh CW, Bartlett SM and Ratcliffe PJ. Identification of hypoxically inducible mRNAs in Hela cells using differential display PCR. Eur. J. Biochem. 241: 403–410, 1996.PubMedCrossRefGoogle Scholar
  30. 30.
    Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V and Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2: 423–427, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, Gavin BJ, Kley N, Kaelin WG, Jr. and Iliopoulos O. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1: 959–968, 1998.PubMedCrossRefGoogle Scholar
  32. 32.
    Pause A, Lee S, Worrell RA, Chen DYT, Burgess WH, Linehan WM and Klausner RD. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. USA 94: 2156–2161, 1997.PubMedCrossRefGoogle Scholar
  33. 33.
    Pugh CW, O’Rourke JF, Nagao M, Gleadle JM and Ratcliffe PJ. Activation of hypoxia inducible factor-1; Definition of regulatory domains within the asubunit. J. Biol. Chem. 272: 11205–11214,1997.PubMedCrossRefGoogle Scholar
  34. 34.
    Richard DE, Berra E and Pouyssegur J. Non-hypoxic pathway mediates the induction of hypoxia inducible factor 1 alpha (HIF-1 {alpha}) in vascular smooth muscle cells. J Biol Chem, 2000.Google Scholar
  35. 35.
    Ryan HE, Lo J and Johnson RS. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBOJ. 17:3005–3015, 1998.CrossRefGoogle Scholar
  36. 36.
    Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM and Johnson RS. Hypoxia-inducible factor-la is a positive factor in solid tumor growth. Cancer Res. 60: 4010–4015, 2000.PubMedGoogle Scholar
  37. 37.
    Salceda S and Caro J. Hypoxia-inducible factor la (HIF-la) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. J. Biol. Chem. 272: 22642–22647, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Semenza G. HIF-1 and human disease: one highly involved factor. Genes Dev. 14: 1983–1991, 2000.PubMedGoogle Scholar
  39. 39.
    Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology 35: 71–103, 2000.PubMedCrossRefGoogle Scholar
  40. 40.
    Shweiki D, Itin A, Soffer D and Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845, 1992.PubMedCrossRefGoogle Scholar
  41. 41.
    Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ and Harper JW. Reconstitution of Gl cyclin ubiquitination with complexes containing SCFGrrl and Rbxl. Science 284: 662–665, 1999.PubMedCrossRefGoogle Scholar
  42. 42.
    Stebbins CE, Kaelin WG, Jr. and Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284: 455–461, 1999.PubMedCrossRefGoogle Scholar
  43. 43.
    Talks K, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ and Harris AL. The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF- 2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157:411–421, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Tanimoto K, Makino Y, Pereira T and Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 19: 4298–4309., 2000.PubMedCrossRefGoogle Scholar
  45. 45.
    Tian H, Hammer RE, Matsumoto AM, Russell DW and McKnight SL. The hypoxia responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12: 3320–3324, 1998.PubMedCrossRefGoogle Scholar
  46. 46.
    Vincent KA, Shyu KG, Luo Y, Magner M, Tio RA, Jiang C, Goldberg OA, Akita GY, Gregory RJ and Isner JM. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-lalpha/VP16 hybrid transcription factor. Circulation 102: 2255–2261, 2000.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang GL, Jiang B-H, Rue EA and Semenza GL. Hypoxia-inducible factor 1 is a basic- helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92: 5510–5514, 1995.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang GL and Semenza GL. Desferoxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82: 3610–3615, 1993PubMedGoogle Scholar
  49. 49.
    Wang GL and Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268: 21513–21518, 1993.PubMedGoogle Scholar
  50. 50.
    Wiesener MS, Turley H, Allen WE, William C, Eckardt K-U, Talks KL, Wood SM, Gatter KC, Harris AL, Pugh CW, Ratcliffe PJ and Maxwell PH. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1 a. Blood 92: 2260–2268, 1998PubMedGoogle Scholar
  51. 51.
    Wiik R, Weizman I and Shilo B-Z. Trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev. 10: 93–102, 1996.CrossRefGoogle Scholar
  52. 52.
    Wood SM, Gleadle JM, Pugh CW, Hankinson O and Ratcliffe PJ. The role of aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression: studies in ARNT deficient cells. J. Biol. Chem. 271: 15117–15123, 1996.PubMedCrossRefGoogle Scholar
  53. 53.
    Wood SM, Wiesener MS, Yeates KM, Okada N, Pugh CW, Maxwell PH and Ratcliffe PJ. Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 α-subunit (HIF-1α). J. Biol. Chem. 273: 8360–8368, 1998.PubMedCrossRefGoogle Scholar
  54. 54.
    Wykoff CC, Beasley NJP, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Maxwell PH, Pugh CW, Ratcliffe PJ and Harris AL. Hypoxia inducible regulation of tumor associated carbonic anhydrases. Cancer Res. 60: 7075–7083, 2000.PubMedGoogle Scholar
  55. 55.
    Wykoff C, Pugh C, Maxwell P, Harris A and Ratcliffe P. Identification of novel hypoxia-dependent and independent target genes of the von Hippel-Lindau (VHL) tumor suppressor by mRNA differential expression profiling. Oncogene 19: 6297–6305, 2000.PubMedCrossRefGoogle Scholar
  56. 56.
    Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JSK, Wiener CM, Sylvester JT and Semenza GL. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J. Clin. Invest. 103: 691–696, 1999.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhong H, Agani E, Baccala AA, Laughner E, Rioseco-Camacho N, Isaacs WB, Simons JW and Semenza GL. Increased expression of hypoxia inducible factor- lot in rat and human prostate cancer. Cancer Res. 58: 5280–5284, 1998.PubMedGoogle Scholar
  58. 58.
    Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL and Simons JW. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 59: 5830–5835, 1999.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Peter H. Maxwell
    • 1
  • C. W. Pugh
    • 1
  • P. J. Ratcliffe
    • 1
  1. 1.Henry Wellcome Building of Genomic MedicineUniversity of OxfordOxfordUK

Personalised recommendations