Advertisement

Structure Prediction of Binding Sites of MHC Class II Molecules based on the Crystal of HLA-DRB1 and Global Optimization

  • M. G. Ierapetritou
  • I. P. Androulakis
  • D. S. Monos
  • C. A. Floudas
Chapter
  • 339 Downloads
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 40)

Abstract

Class II histocompatibility molecules are cell surface molecules that form complexes with self and non-self peptides and present them to T-cells that activate the immune response. A number of class II histocompatibility molecules have been analyzed by crystallography and include the molecules HLA-DR1 [59], HLA-DR3 [22], and I-E k [21].

A novel theoretical predictive approach is presented that can determine three dimensional structures of the binding sites of the HLA-II molecules based on the crystallographic data of previously characterized HLA class II molecules. The proposed approach uses the ECEPP/3 detailed potential energy model for describing the energetics of the atomic interactions in the space of substituted residues dihedral angles and employs a rigorous deterministic global optimization algorithm αBB [1, 6, 2, 3, 4] to obtain the global minimum energy conformation of the binding site. The binding sites of the HLA—DR3 and I-E k molecules are predicted based on the crystallographic data of HLADR1 [59]. The predicted structures of the binding sites of these molecules exhibit small root mean square differences that range between 1.09–2.03Å (based on all atoms) in comparison to the reported crystallographic data [21, 22]. The energetic driving forces for binding of the predicted structures are also studied using the decomposition-based approach of Androulakis et al. [28] and found to provide very good agreement with the results of the crystallographically obtained binding sites.

Keywords

Structure prediction Global optimization MHC class II molecules Binding sites Peptide docking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. S. Adjiman, and C. A. Floudas. Rigorous Convex Underestimators for General Twice-Differentiable Problems. Jl. Global Opt., 9, 23–40, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    C. S. Adjiman, I. P. Androulakis, C. D. Maranas, and C. A. Floudas. A global optimization method, αbb, for process design. Comp. Chem. Engng., 20, 419–418, 1996.CrossRefGoogle Scholar
  3. [3]
    C. S. Adjiman, S. Dallwig, C. A. Floudas and A. Neumaier. Global Optimization Method, αbb, for Twice-Differentiable Constrained NLPs — I Theoretical Advances Comp. Chem. Engng., 22, 1137–1158, 1998.CrossRefGoogle Scholar
  4. [4]
    C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. Global Optimization Method, αbb, for Twice-Differentiable Constrained NLPs — II Implementation and Computational Results Comp. Chem. Engng., 22, 1159–418, 1998.CrossRefGoogle Scholar
  5. [5]
    N.L. Allinger, Y.H. Yuh, and J.-H. Liu. Molecular mechanics. the mm3 force field for hydrocarbons. J. Am. Chem. Soc., 111:8551, 1989.CrossRefGoogle Scholar
  6. [6]
    I. P. Androulakis, C. D. Maranas, and C. A. Floudas. αbb: A global optimization method for general constrained nonconvex problems. Journal of Global Optimization, 7:337–363, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    I.P. Androulakis, C.D. Maranas, and C.A. Floudas. Prediction of oligopeptide conformations via deterministic global optimization. Journal of Global Optimization, 11:1–34, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    D.J. Bacon and J. Moult. Docking by least-square fitting of molecular surface patterns. Jl. Mol. Biol., 225:849–858, 1992.CrossRefGoogle Scholar
  9. [9]
    T.L. Blundell, B.L. Sibanda, M.J.E. Sternberg, and J.M. Thornton. Knowledge-based prediction of protein structures and the design of novel molecules. Nature, 326:347, 1987.CrossRefGoogle Scholar
  10. [10]
    B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and M. Karplus. Charm: A program for macromolecular energy minimization and dynamics calculation. J. Comp. Chem, 8:132, 1983.Google Scholar
  11. [11]
    A. Calfisch, P. Niederer, and M. Anliker. Monte carlo docking of oligopeptides to proteins. Proteins, 13:223–230, 1992.CrossRefGoogle Scholar
  12. [12]
    R. Chandrasekaran and G.N. Ramachandran. Studies on the conformation of amino acids, xi. analysis of the observed side group conformations in proteins. Int. J. Protein Res., 2:223, 1970.CrossRefGoogle Scholar
  13. [13]
    S.Y. Chung and S. Subbiah. A structural explanation for the twilight zone of protein sequence homology. Structure, 4:1123, 1996.CrossRefGoogle Scholar
  14. [14]
    M. L. Connolly. Analytical molecular surface calculations. J. Appl. Cryst., 16:548–558, 1983.CrossRefGoogle Scholar
  15. [15]
    M.L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids. Science, 221:709, 1983.CrossRefGoogle Scholar
  16. [16]
    P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, and A.T. Hagler. Structure and energetics of ligand binding to peptides: Escherichia coli dihydrofolate reductase—trimethoprim, a drug receptor system. Proteins, 4:31, 1988.CrossRefGoogle Scholar
  17. [17]
    R. Diamond. On the comparison of conformations using linear and quadratic transformations. ACTA Cryst., 1, 1976.Google Scholar
  18. [18]
    R.L. Dunbrack and M. Karplus. Backbone-dependent rotamer library for proteins: Application to side-chain prediction. J. Mol. Biol., 230:543, 1993.CrossRefGoogle Scholar
  19. [19]
    C.A. Floudas. Deterministic global optimization in design, control, and computational chemistry. In L.T. Biegler, T.F. Coleman, A.R. Conn, and F.N. Santosa, editors, Large Scale Optimization with Applications, Part II: Optimal Design and Control, volume 93, pages 129–184. IMA Volumes in Mathematics and its Applications, Springer—Verlag, 1997.CrossRefGoogle Scholar
  20. [20]
    C.A. Floudas, P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z. Gumus, S.T Harding, J.L. Klepeis, C.A. Meyer and C.A. Schweiger. Handbook of Test Problems for Local and Global Optimization. Kluwer Academic Publishers, (1999).CrossRefGoogle Scholar
  21. [21]
    D. H. Fremont, W.A. Hendrickson, P. Marrack, and J. Kappler. Structures of an mhc class ii molecule with covalently bound single peptides. Science, 272:1001–1004, 1996.CrossRefGoogle Scholar
  22. [22]
    P. Ghosh, M. Amaya, E. Mellins, and D.C. Wiley. The structure of an intermediate in class ii mhc maturation: Clip bound to hla-dr3. Nature, 378:457–462, 1995.CrossRefGoogle Scholar
  23. [23]
    D.S. Goodsell and A.J. Olson. Automated docking of substrates to proteins by simulated annealing. Proteins, 8:195–202, 1990.CrossRefGoogle Scholar
  24. [24]
    T.N. Hart and R.J. Read. A multiple-start monte-carlo docking method. Proteins, 13:206–222, 1992.CrossRefGoogle Scholar
  25. [25]
    L. Holm and C. Sander. Fast and simple monte-carlo algorithm for side-chain optimization in proteins: application to model building by homology. Proteins: Sruct. Funct. Genet., 14:213, 1994.CrossRefGoogle Scholar
  26. [26]
    J.K. Hwang and W.F. Liao. Side-chain prediction by neural networks and simulated annealing optimization. Protein Eng., 8:363, 1995.CrossRefGoogle Scholar
  27. [27]
    I.D. Kuntz, J.M. Blaney, S.J. Oatley, R. Langridge, and T.E. Ferrin. A geometric approach to macromolecule-ligand interactions. Jl. Mol. Biol., 161:269–288, 1982.CrossRefGoogle Scholar
  28. [28]
    I.P. Androulakis, N.N. Nayak, M.G. Ierapetritou, D.S. Monos, and C.A. Floudas. A predictive method for the evaluation of peptide binding in pocket 1 of hla-drbl via global minimization of energy interactions. Proteins, 29:87–102, 1997.CrossRefGoogle Scholar
  29. [29]
    F. Jiang and S.H. Kim. Soft docking: Matching of molecular surface cubes. Jl. Mol. Biol., 219:79–102, 1991.CrossRefGoogle Scholar
  30. [30]
    W. Kabsh. A solution for the best rotation to relate two sets of vectors. ACTA Cryst., page 922, 1976.Google Scholar
  31. [31]
    W. Kabsh. A discussion of the solution for the best rotation to relate two sets of vectors. ACTA Cryst., page 827, 1978.Google Scholar
  32. [32]
    J.L. Klepeis, I. P. Androulakis, M. G. Ierapetritou, and C. A. Floudas. Predicting solvated peptide conformations via global minimization of energetic atom-to atom interactions. Comp. Chem. Engng., 22, 765–788, 1998.CrossRefGoogle Scholar
  33. [33]
    J.L. Klepeis, and C. A. Floudas. Free Energy Calculations for Peptides via Deterministic Global Optimization. Jl. Chem. Phys., 110:7491–7512, 1999.CrossRefGoogle Scholar
  34. [34]
    P. Koehl and M. Delarue. Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J. Mol. Biol., 239:249, 1994.CrossRefGoogle Scholar
  35. [35]
    B. Lee and F.M. Richards. The interpretation of protein structures: Estimation of static accessibility. Jl. Mol. Biol., 55:379–400, 1971.CrossRefGoogle Scholar
  36. [36]
    M. Levitt. Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol., 170:723, 1983.CrossRefGoogle Scholar
  37. [37]
    A. L. Mackay. The generalized inverse and inverse structure. ACTA Cryst., page 212, 1977.Google Scholar
  38. [38]
    C. D. Maranas, I. P. Androulakis, and C. A. Floudas. A deterministic global optimization approach for the protein folding problem. In DIMA CS Series in Discrete Mathematics and Theoretical Computer Science, volume 23, pages 133–150. American Mathematical Society, 1996.Google Scholar
  39. [39]
    C. D. Maranas and C. A. Floudas. A global optimization approach for lennard-jones microclusters. J. Chem. Phys., 97(10):7667–7677, 1992.CrossRefGoogle Scholar
  40. [40]
    C. D. Maranas and C. A. Floudas. Global optimization for molecular conformation problems. Annals of Operations Research, 42:85–117, 1993.zbMATHCrossRefGoogle Scholar
  41. [41]
    C. D. Maranas and C. A. Floudas. A deterministic global optimization approach for molecular structure determination. J. Chem. Phys., 100(2):1247–1261, 1994.MathSciNetCrossRefGoogle Scholar
  42. [42]
    C. D. Maranas and C. A. Floudas. Global minimum potential energy conformations of small molecules. Journal of Global Optimization, 4:135–170, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    C.D. Maranas, I.P. Androulakis, and C.A. Floudas. A deterministic global optimization approach for the protein folding problem. In P.M. Pardalos, D. Shalloway, and G. Xue, editors, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 23, pages 133–150. American Mathematical Society, 1995.Google Scholar
  44. [44]
    C.D. Maranas and C.A. Floudas. Global minimum potential energy conformations of small molecules. Journal of Global Optimization, 4:135–170, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    A. D. McLachlan. A mathematical procedure for superimposing atomic coordinates of proteins. ACTA Cryst., page 656, 1972.Google Scholar
  46. [46]
    A. D. McLachlan. Gene duplications in the structural evolution of chymotrypsin. J. Mol. Biol., 128:49, 1979.CrossRefGoogle Scholar
  47. [47]
    F. A. Momany, L. M. Carruthers, R. F. McGuire, and H. A. Scheraga. Intermolecular potential from crystal data. iii. J. Phys. Chem., 78:1595–1620, 1974.CrossRefGoogle Scholar
  48. [48]
    F. A. Momany, L. M. Carruthers, and H. A. Scheraga. Intermolecular potential from crystal data. iv. J. Phys. Chem., 78:1621–1630, 1974.CrossRefGoogle Scholar
  49. [49]
    F.A. Momany, L.M. Carruthers, R.F. McGuire, and H.A. Scheraga. Energy parameters in polypeptides. vii. geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem., 79:2361, 1975.CrossRefGoogle Scholar
  50. [50]
    D. Monos, A. Soulika, E. Argyris, J. Corga, L. Stern, V. Magafa, P. Cordopatis, I.P. Androulakis, and C.A. Floudas. HLA—Peptide Interactions: Theoretical and Experimental Approaches. Proceedings of the 12th International Histocompatibility Conference, Vol 12, 1996.Google Scholar
  51. [51]
    G. Némethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini, A. Zagari, S. Rumsey, and H. A. Scheraga. Energy parameters in polypeptides. 10. J. Phys. Chem., 96:6472–6484, 1992.CrossRefGoogle Scholar
  52. [52]
    G. Némethy, M.S. Pottle, and H.A. Scheraga. Energy parameters in polypeptides. 9. updating of geometrical parameters, nonbinded interaction and hydrogen bond interactions for the naturally occurring amino acids. J. Phys. Chem., 89:1883, 1983.CrossRefGoogle Scholar
  53. [53]
    G. Perrot, B. Cheng, K. D. Gibson, K. A. Palmer, J. Vila, A. Nayeem, B. Maigret, and H. A. Scheraga. Mseed: A program for the rapid analytical determination of accessible surface areas and their derivatives. J. Comp. Chem, 13:1–11, 1992.CrossRefGoogle Scholar
  54. [54]
    S. T. Rao and M.G. Rossmann. Comparison of Super-Secondary Structures in Proteins. J. Mol. Biol., 76:241, 1973.CrossRefGoogle Scholar
  55. [55]
    S.J. Remington and B.W. Matthews. General Method to assess similarity of protein structures, with applications to T4-Bacteriophage Lysozyme Proc. Nat. Acad. Sci. USA, 75:2180, 1978.CrossRefGoogle Scholar
  56. [56]
    H. Schauber, F. Eisenhaber, and P. Argos. Rotamers: to be or not to be? an analysis of amino acid side-chain conformations in globular proteins. J. Mol. Biol., 230:592, 1993.CrossRefGoogle Scholar
  57. [57]
    H.A. Scheraga. ECEPP/3 USER GUIDE. Cornell University Department of Chemistry, January 1993.Google Scholar
  58. [58]
    H.A. Scheraga. PACK: Programs for Packing Polypeptide Chains, 1996. online documentation.Google Scholar
  59. [59]
    L. Stern, J. Brown, T. Jardetzky, J. Gorga, R. Urban, L. Strominger, and D. Wiley. Crystal structure of the human class ii mhc protein hla-drl complexes with an influenza virus peptide. Nature, 368:215–221, 1994.CrossRefGoogle Scholar
  60. [60]
    M.J. Sutcliffe, I. Haneef, D. Carney, and T.L. Blundell. Knowledge-based modeling of homologous proteins, part i: three dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng., 1:377, 1987.CrossRefGoogle Scholar
  61. [61]
    P. Tuffery, C. Etchebest, S. Hazout, and R. Lavery. A new approach to the rabid determination of protein side-chain conformations. J. Biomol. Struct. Dynam., 8:1267, 1991.CrossRefGoogle Scholar
  62. [62]
    W. F. van Gunsteren and H. J. C. Berendsen. GROMOS. Groningen Molecular Simulation, Groningen, The Netherlands, 1987.Google Scholar
  63. [63]
    M. Vasquez. An evaluation of discrete and continuous search techniques for conformational analysis of side-chains in proteins. Biopolymers, 36:53, 1995.CrossRefGoogle Scholar
  64. [64]
    M. Vásquez, G. Némethy, and H. A. Scheraga. Conformational energy calculations on polypeptides and proteins. Chemical Reviews, 94:2183–2239, 1994.CrossRefGoogle Scholar
  65. [65]
    J. Vila, R.L. Williams, M. Vasquez, and H.A. Scheraga. Empirical solvation models can be used to differentiate native from non-native conformations of bovine pancreatic trypsin inhibitor. Proteins, pages 199–218, 1991.Google Scholar
  66. [66]
    S. Weiner, P. Kollmann, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta, and P. Weiner. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc., 106:765, 1984.CrossRefGoogle Scholar
  67. [67]
    S. Weiner, P. Kollmann, D. Nguyen, and D. Case. An all atom force field for simulations of proteins and nucleic acids. J. Comp. Chem., 7:230, 1986.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • M. G. Ierapetritou
    • 1
  • I. P. Androulakis
    • 2
  • D. S. Monos
    • 3
  • C. A. Floudas
    • 4
  1. 1.Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Corporate Research Science LaboratoriesExxon Research & Engineering Co.AnnandaleUSA
  3. 3.Department of Pediatrics, The Children’s Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations