Advances in Steiner Trees pp 81-116

Part of the Combinatorial Optimization book series (COOP, volume 6) | Cite as

Exact Algorithms for Plane Steiner Tree Problems: A Computational Study

  • D. M. Warme
  • P. Winter
  • M. Zachariasen

Abstract

We present a computational study of exact algorithms for the Euclidean and rectilinear Steiner tree problems in the plane. These algorithms — which are based on the generation and concatenation of full Steiner trees — are much more efficient than other approaches and allow exact solutions of problem instances with more than 2000 terminals. The full Steiner tree generation algorithms for the two problem variants share many algorithmic ideas and the concatenation part is identical (integer programming formulation solved by branch-and-cut). Performance statistics for randomly generated instances, public library instances and “difficult” instances with special structure are presented. Also, results on the comparative performance on the two problem variants are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41:1069–1072,1990.Google Scholar
  2. [2]
    M. W. Bern and R. L. Graham. The Shortest-Network Problem. Scientific American, pages 66–71, January 1989.Google Scholar
  3. [3]
    M. Brazil, T. Cole, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald. Minimal Steiner Trees for 2k x 2k Square Lattices. Journal of Combinatorial Theory, Series A, 73:91–110, 1996.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald. Full Minimal Steiner Trees on Lattice Sets. Journal of Combinatorial Theory, Series A, 78:51–91, 1997.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald. Minimal Steiner Trees for Rectangular Arrays of Lattice Points. Journal of Combinatorial Theory, Series A, 79:181–208, 1997.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    E. J. Cockayne and D. E. Hewgill. Exact Computation of Steiner Minimal Trees in the Plane. Information Processing Letters, 22:151–156, 1986.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    E. J. Cockayne and D. E. Hewgill. Improved Computation of Plane Steiner Minimal Trees. Algorithmica, 7(2/3):219–229, 1992.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    S. E. Dreyfus and R. A. Wagner. The Steiner Problem in Graphs. Networks, 1:195–207, 1971.MathSciNetCrossRefGoogle Scholar
  9. [9]
    U. Fößmeier and M. Kaufmann. On Exact Solutions for the Rectilinear Steiner Tree Problem. Technical Report WSI-96–09, Universität Tübingen, 1996.Google Scholar
  10. [10]
    J. L. Ganley and J. P. Cohoon. Improved Computation of Optimal Rectilinear Steiner Minimal Trees. International Journal of Computational Geometry and Applications, 7(5):457–472, 1997.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    M. R. Garey, R. L. Graham, and D. S. Johnson. The Complexity of Computing Steiner Minimal Trees. SIAM Journal on Applied Mathematics, 32(4):835–859, 1977.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree Problem is NP-Complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    M. Hanan. On Steiner’s Problem with Rectilinear Distance. SIAM Journal on Applied Mathematics, 14(2):255–265, 1966.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    F. K. Hwang. On Steiner Minimal Trees with Rectilinear Distance. SIAM Journal on Applied Mathematics, 30:104–114, 1976.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete Mathematics 53. Elsevier Science Publishers, Netherlands, 1992.Google Scholar
  16. [16]
    F. K. Hwang and J. F. Weng. The Shortest Network under a Given Topology. Journal of Algorithms, 13:468–488, 1992.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    K. Mehlhorn and S. Näher. LEDA — A Platform for Combinatorial and Geometric Computing. Max Planck Institute for Computer Science http://www.mpi-sb.mpg.de/LEDA/leda.html, 1996.Google Scholar
  18. [18]
    F.P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, second edition, 1988.Google Scholar
  19. [19]
    G. Reinelt. TSPLIB — A Traveling Salesman Problem Library. ORSA Journal on Computing, 3(4):376–384, 1991.MATHCrossRefGoogle Scholar
  20. [20]
    J. S. Salowe and D. M. Warme. Thirty-Five-Point Rectilinear Steiner Minimal Trees in a Day. Networks, 25(2):69–87, 1995.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    W. D. Smith. How to Find Steiner Minimal Trees in Euclidean d-Space. Algorithmica, 7(2/3):137–177, 1992.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    I. Tomescu and M. Zimand. Minimum Spanning Hypertrees. Discrete Applied Mathematics, 54:67–76, 1994.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    D. M. Warme. Practical Exact Algorithms for Geometric Steiner Problems. Technical report, System Simulation Solutions, Inc., Alexandria, VA 22314, USA, 1996.Google Scholar
  24. [24]
    D. M. Warme. A New Exact Algorithm for Rectilinear Steiner Minimal Trees. Technical report, System Simulation Solutions, Inc., Alexandria, VA 22314, USA, 1997.Google Scholar
  25. [25]
    P. Winter. An Algorithm for the Steiner Problem in the Euclidean Plane. Networks, 15:323–345, 1985.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    P. Winter and M. Zachariasen. Euclidean Steiner Minimum Trees: An Improved Exact Algorithm. Networks, 30:149–166, 1997.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    M. Zachariasen. Rectilinear Full Steiner Tree Generation. Networks, to appear.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • D. M. Warme
    • 1
  • P. Winter
    • 2
  • M. Zachariasen
    • 2
  1. 1.System Simulation Solutions, Inc.AlexandriaUSA
  2. 2.Department of Computer ScienceUniversity of CopenhagenDenmark

Personalised recommendations