Photosynthesis, Respiration, and Long-Distance Transport

  • Hans Lambers
  • F. Stuart ChapinIII
  • Thijs L. Pons


Approximately 40% of a plant’s dry mass consists of carbon, fixed in photosynthesis. This process is vital for growth and survival of virtually all plants during the major part of their growth cycle. In fact, life on earth in general, not just that of plants, totally depends on current and/or past photosynthetic activity. Leaves are beautifully specialized organs that enable plants to intercept the light necessary for photosynthesis. The light is captured by a large array of chloroplasts that are in close proximity to air and not too far away from vascular tissue, which supplies water and exports the products of photosynthesis. CO2 uptake occurs through leaf pores, the stomata, which are able to rapidly change their aperture (see Sect. 5.4 in plant water relations). Once inside the leaf, CO2 diffuses from the intercellular air spaces to the sites of carboxylation in the chloroplast (C3 species) or in the cytosol (C4 and CAM species).


Mesophyll Cell Root Respiration Crassulacean Acid Metabolism Plant Cell Environ Alternative Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Anderson, J.W. & Beardall, J. (1991) Molecular Activities of Plant Cells. An Introduction to Plant Biochemistry. Blackwell Scientific Publications, Oxford.Google Scholar
  2. Azcón-Bieto, J. (1983) Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiol. 173:681–686.Google Scholar
  3. Bastide, B., Sipes, D., Hann, J., & Ting, I.P. (1993) Effect of severe water stress on aspects of crassulacean acid metabolism in Xerosicyos. Plant Physiol. 103: 1089–1096PubMedGoogle Scholar
  4. Bauwe, H., Kerberg, O., Bassuner, R., Parnik, T., & Bassuner, B. (1987) Reassimilation of carbon dioxide by Flaveria (Asteraceae) species representing different types of photosynthesis. Planta 172:214–218.CrossRefGoogle Scholar
  5. Berry, J.A. & Raison, J.K. (1981) Responses of macrophytes to temperature. In: Encyclopedia of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 277–338.Google Scholar
  6. Beyschlag, W. & Pfanz, H. (1990) A fast method to detect the occurrence of nonhomogeneous distribution of stomatal aperture in heterobaric plant leaves. Experiments with Arbutus unedo L. during the diurnal course. Oecologia 82:52–55.CrossRefGoogle Scholar
  7. Björkman, O. (1981) Responses to different quantum flux densities. In: Encyclopedia of plant physiology, N.S., Vol. 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 57–107.Google Scholar
  8. Black, C.C., Chen, J.Q., Doong, R.L., Angelov, M.N., & Sung, S.J.S. (1996) Alternative carbohydrate reserves used in the daily cycle of Crassulacean acid metabolism. In: Crassulacean acid metabolism, biochemistry, ecophysiology and evolution. Ecological Studies 114, K. Winter & J.A.C. Smith (eds). Springer-Verlag, Berlin, pp. 31–45.CrossRefGoogle Scholar
  9. Black, V.J. (1982) Effects of sulphur dioxide on physiological processes in plants. In: Effects of gaseous air pollution in agriculture and horticulture, M.H. Unsworth & D.P. Ormrod (eds). Butterworths, London, pp. 67–91.Google Scholar
  10. Black, V.J. & Unsworth, M.H. (1997) A system for measuring effects of sulphur dioxide on gas exchange of plants. J. Exp. Bot. 30:81–88.CrossRefGoogle Scholar
  11. Bowes, G. (1993) Facing the inevitable: Plants and increasing atmospheric CO2. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:309–332.CrossRefGoogle Scholar
  12. Bowes, G. & Salvucci, M.E. (1989) Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat. Bot. 34:233–286.CrossRefGoogle Scholar
  13. Brown, R. & Bouton, J.H. (1993) Physiology and genetics of interspecific hybrids between photosynthetic types. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:435–456.CrossRefGoogle Scholar
  14. Brown, R.H. & Hattersley, P.W. (1989) Leaf anatomy of C3-C4 species as related to evolution of C4 photosynthesis. Plant Physiol. 91:1543–1550.PubMedCrossRefGoogle Scholar
  15. Brugnoli, E. & Björkman, O. (1992) Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth. Res. 32:23–35.CrossRefGoogle Scholar
  16. Brugnoli, E. & Lauteri, M. (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol. 95:628–635.PubMedCrossRefGoogle Scholar
  17. Campbell, W.J. & Ogren, W.L. (1990) A novel role for light in the activation of ribulose-bisphosphate carboxylase / oxygenase. Plant Physiol. 92:110–115.PubMedCrossRefGoogle Scholar
  18. Chapin III, F.S. & Shaver, G.R. (1985) Individualistic growth response of tundra plant species to manipulation of light, temperature, and nutrients in a field experiment. Ecology 66:564–576.CrossRefGoogle Scholar
  19. Chazdon, R.L. & Pearcy, R.W. (1986) Photosynthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia 69:517–523.Google Scholar
  20. Chazdon, R.L. & Pearcy, R.W. (1991) The importance of sunflecks for forest understory plants. BioSciences 41:760–766.CrossRefGoogle Scholar
  21. Christie, E.K. & Detling, J.K. (1982) Analysis of interference between C3 and C4 grasses in relation to temperature and soil nitrogen supply. Ecology 63:1277–1284.CrossRefGoogle Scholar
  22. Chu, C., Dai, Z., Ku, M.S.B., & Edwards, G.E. (1990) Induction of crassulacean metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol. 93:1253–1260.PubMedCrossRefGoogle Scholar
  23. Coté, F.X., André, M., Folliot, M., Massimino, D., & Daguenet, A. (1989) CO2 and 02 exchanges in the CAM plant Ananas comosus (L.) Merr. determination or total and malate-decarboxylation-dependent CO2- assimilation rates; study of light O2-uptake. Plant Physiol. 89:61–68.PubMedCrossRefGoogle Scholar
  24. Cui, M. & Nobel, P.S. (1994) Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ. 17:935–944.CrossRefGoogle Scholar
  25. Curtis, P.S. (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ. 19:127–137.CrossRefGoogle Scholar
  26. DeLucia, E.H., Nelson, K., Vogelmann, T.C., & Smith, W.K. (1996) Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant Cell Environ. 19:159–170.CrossRefGoogle Scholar
  27. Demmig, B., Winter, K., Kriger, A., & Czygan, F.-C. (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 84:218–224.PubMedCrossRefGoogle Scholar
  28. Demmig-Adams, B. (1990) Carotenoids and photoprotection: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta. 1020:1–24.CrossRefGoogle Scholar
  29. Demmig-Adams, B. & Adams, W.W. (1992) Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Molec. Biol. 43:599–626.CrossRefGoogle Scholar
  30. Demmig-Adams, B. & Adams, W.W. (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Sciences 1:21–26.CrossRefGoogle Scholar
  31. Downton, W.J.S., Loveys, B.R., & Grant, W.J.R. (1988) Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol. 108:263–266.CrossRefGoogle Scholar
  32. Eckstein, J., Beyschlag, W., Mott, K.A., & Ryell, R.J. (1996) Changes in photon flux can induce stomatal patchiness. Plant Cell Environ. 19:1066–1074.CrossRefGoogle Scholar
  33. Ehleringer, J.R. (1993) Gas exchange implications of isotopic variation in arid-land plants. In: Water deficits: Plant responses from cell to community, J.A.C. Smith & H. Griffiths (eds). Bios Scientific Publishers, Oxford, pp. 265–284.Google Scholar
  34. Ehleringer, J.R. & Monson, R.K. (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24:411–439.CrossRefGoogle Scholar
  35. Ehleringer, J.R., Sage, R.F., Flanagan, L.B., & Pearcy, R.W. (1991) Climate change and the evolution of C4 photosynthesis. Trends Ecol. Evol. 6:95–99.PubMedCrossRefGoogle Scholar
  36. Ehleringer, J., Björkman, O., & Mooney, H.A. (1976) Leaf pubescence: Effects on absorptance and photosynthesis in a desert shrub. Science 192:376–377.PubMedCrossRefGoogle Scholar
  37. Eller, B.M. & Ferrari, S. (1997) Water use efficiency of two succulents with contrasting CO2 fixation pathways. Plant Cell Environ. 20:93–100.CrossRefGoogle Scholar
  38. Elzenga, J.T.M. & Prins, H.B.A. (1988) Adaptation of Elodea and Potamogeton to different inorganic carbon levels and the mechanism for photosynthetic bicarbonate utilisation. Aust. J. Plant Physiol. 15:727–735.CrossRefGoogle Scholar
  39. Elzenga, J.T.M. & Prins, H.B.A. (1989) Light-induced polar pH changes in leaves of Elodea canadensis. I. Effects of carbon concentration and light intensity. Plant Physiol. 91:62–67.PubMedCrossRefGoogle Scholar
  40. Evans, J.R. (1988) Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. Aust. J. Plant Physiol. 15:93–106.CrossRefGoogle Scholar
  41. Evans, J.R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19.CrossRefGoogle Scholar
  42. Evans, J.R. & Seemann, J.R. (1989) The allocation of protein nitrogen in the photosynthetic apparatus: Costs, consequences, and control. In: Photosynthesis, W.R. Briggs (ed). Alan Liss Inc., New York.Google Scholar
  43. Evans, J.R. & Von Caemmerer, S. (1996) Carbon dioxide diffusion inside leaves. Plant Physiol. 110:339–346.PubMedGoogle Scholar
  44. Farmer, A.M. (1996) Carbon uptake by roots. In: Plant Roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, Inc., New York, pp. 679–687.Google Scholar
  45. Farquhar, G.D. & Richards, R.A. (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11:539–552.CrossRefGoogle Scholar
  46. Farquhar, G.D. & Sharkey, T.D. (1982) Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33:317–345.CrossRefGoogle Scholar
  47. Field, C.B. & Mooney, H.A. (1986) The photosynthesisnitrogen relationship in wild plants. In: On the economy of plant form and function, T.J. Givnish (ed). Cambridge University Press, Cambridge, pp. 25–55.Google Scholar
  48. Flügge, U.I., Stitt, M., & Heldt, H.W. (1985) Light-driven uptake or pyruvate into mesophyll chloroplasts from maize. FEBS Lett. 183:335–339.CrossRefGoogle Scholar
  49. Fredeen, A.L., Gamon, J.A., & Field, C.B. (1991) Responses of photosynthesis and carbohydrate partitioning to limitations in nitrogen and water availability in field grown sunflower. Plant Cell Environ. 14:969–970.CrossRefGoogle Scholar
  50. Gilmore, A.M. (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99:197–209.CrossRefGoogle Scholar
  51. Goldschmidt, E.E. & Huber, S.C. (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol. 99:1443–1448.PubMedCrossRefGoogle Scholar
  52. Gornic, G., Le Gouallec, J.-L., Briantais, J.M., & Hodges, M. (1989) Effect of dehydration and high light on photosynthesis of two C3 plants (Phaseolus vulgaris L. and Elatostoma repens (Lour) Hall f.). Planta 177:84–90.CrossRefGoogle Scholar
  53. Gunasekera, D. & Berkowitz, G.A. (1992) Heterogenous stomatal closure in response to leaf water deficits is not a universal phenomenon. Plant Physiol. 98:660–665.PubMedCrossRefGoogle Scholar
  54. Hougthon, J.T., Jenkins, G.J., & Ephraums, J.J. (1990) Climate change, The IPCC scientific assessment. Cambridge University Press, Cambridge.Google Scholar
  55. Harris, F.S. & Martin, C.E. (1991) Correlation between CAM-cycling and photosynthetic gas exchange in five species of (Talinum) (Portulacaceae). Plant Physiol. 96:1118–1124.PubMedCrossRefGoogle Scholar
  56. Hubick, K. & Farquhar, G.D. (1989) Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars. Plant Cell Environ. 12:795–804.CrossRefGoogle Scholar
  57. Flanagan, L.B. & Jefferies, R.L. (1989) Photosynthetic and stomatal responses of the halophyte, Plantago maritima L. to fluctuations in salinity. Plant Cell Environ. 12:559–568.CrossRefGoogle Scholar
  58. Goudriaan, J. (1987) The biosphere as a driving force in the global carbon cycle. Neth. J. Agric. Sci. 35:177–187.Google Scholar
  59. Goudriaan, J. (1993) Interaction of ocean and biosphere in their transient response to increasing atmospheric CO2. Vegetatio 104/105:329–337.CrossRefGoogle Scholar
  60. Goudriaan, J. (1987) The biosphere as a driving force in the global carbon cycle. Neth. J. Agric. Sci. 35:177–187.Google Scholar
  61. Hanson, H.C. (1917) Leaf structure asrelated to environment. Am. J. Bot. 4:533–560.CrossRefGoogle Scholar
  62. Hatch, M.D. & Carnal, N.W. (1992) The role of mitochondria in C4 photosynthesis. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. van der Plas (eds). SPB Academic Publishing, The Hague, pp. 135–148.Google Scholar
  63. Hatch, M.D. & Slack, C.R. (1966) Photosynthesis by sugar cane leaves—a new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101:103–111.PubMedGoogle Scholar
  64. Hattersley, P.W. (1983) The distribution or C3 and C4 grasses in Australia in relation to climate. Oecologia 57:113–128.CrossRefGoogle Scholar
  65. Henderson, S., Hattersley, P., Von Caemmerer, S., & Osmond, C.B. (1995) Are C4 pathway plants threatened by global climatic change? In: Ecophysiology of photosynthesis, E.-D. Schulze & M.M. Caldwell (eds). Springer-Verlag, Berlin, pp. 529–549.CrossRefGoogle Scholar
  66. Hougthon, J.T., Jenkins, G.J., & Ephraums, J.J. (1990) Climate Change, The IPCC Scientific Assesment. Cambridge University Press, Cambridge.Google Scholar
  67. Johnson, G.N., Young, A.J., Scholes, J.D., & Horton, P. (1993a) The dissipation of excess excitation energy in British plant species. Plant Cell Environ. 16:673–679.CrossRefGoogle Scholar
  68. Johnson, G.N., Scholes, J.D., Horton, P., & Young, A.J. (1993b) Relationship between carotenoid composition and growth habit in British plant species. Plant Cell Environ. 16:681–686.CrossRefGoogle Scholar
  69. Johnson, H.B., Polley, H.W., & Mayeux, H.S. (1993) Increasing CO2 and plant-plant interactions: Effects on natural vegetation. Vegetatio 104/105:157–170.CrossRefGoogle Scholar
  70. Jones, P.G., Lloyd, J.C., & Raines, C.A. (1996) Glucose feeding of intact wheat plants represses the expression of a number of Calvin cycle genes. Plant Cell Environ. 19:231–236.CrossRefGoogle Scholar
  71. Kao, W.-Y. & Forseth, I.N. (1992) Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ. 15:703–710.CrossRefGoogle Scholar
  72. Keeley, J.E. (1990) Photosynthetic pathways in freshwater aquatic plants. Trends Ecol. Evol. 5:330–333.PubMedCrossRefGoogle Scholar
  73. Keeley, J.E. & Busch, G. (1984) Carbon assimilation characteristics of the aquatic CAM plant, Isoetes howellii. Plant Physiol. 76:525–530.PubMedCrossRefGoogle Scholar
  74. Keeley, J.E. & Sandquist, D.R. (1991) Diurnal photosynthesis cycle in CAM and non-CAM seasonal-pool aquatic macrophytes. Ecology 72:716–727.CrossRefGoogle Scholar
  75. Keeley, J.E. & Sandquist, D.R. (1992) Carbon: Freshwater aquatics. Plant Cell Environ. 15:1021–1035.CrossRefGoogle Scholar
  76. Keeling, C.D. & Whorf, T.P. (1996) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: A compendium of data on global change. Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak Ridge.Google Scholar
  77. Kirschbaum, M.U.F. & Pearcy, R.W. (1988) Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in Alocasia macrorrhiza. Plant Physiol. 86:782–785.PubMedCrossRefGoogle Scholar
  78. Kluge, M. & Ting, I.P. (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. SpringerVerlag, Berlin.Google Scholar
  79. Koch, K.E. (1996) Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:509–540.PubMedCrossRefGoogle Scholar
  80. Koch, K.E. & Kennedy, R.A. (1982) Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. under natural environmental conditions. Plant Physiol. 69:757–761.PubMedCrossRefGoogle Scholar
  81. Kopriva, S., Chu, C.-C., & Bauwe, H. (1996) Molecular phylogeny of Flaveria as deduced from the analysis of nucleotide sequences encoding the H-protein of the glycine cleavage system. Plant Cell Environ. 19:1028–1036.CrossRefGoogle Scholar
  82. Körner, C. (1989) Bedeutung der Wälder in Naturhaushalt einer vom Menschen ver S nderten Welt. In: Die Bedrohung der Wälder, H. Franz (ed). Verlag der Oesterreichischen Akademie der Wissenschaften, Vienna, pp. 7–40.Google Scholar
  83. Korner, C. & Larcher, W. (1988) Plant life in cold climates. Symposium of the Society of Experimental Biology 42:25–57.Google Scholar
  84. Knight, J.D., Livingston, N.J., & Van Kessel, C. (1994) Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dryland conditions. Plant Cell Environ. 17:173–179.CrossRefGoogle Scholar
  85. Krall, J.P., Edwards, G.E., & Andrea, C.S. (1989) Protection of pyruvate, Pi dikinase from maize against cold lability by compatible solutes. Plant Physiol. 89:280–285.PubMedCrossRefGoogle Scholar
  86. Krapp, A. & Stitt, M. (1994) Influence of high carbohydrate content on the activity of plastidic and cytosolic isozyme pairs in photosynthetic tissues. Plant Cell Environ. 17:861–866.CrossRefGoogle Scholar
  87. Krapp, A., Hofmann, B., Schafer, C., & Stitt, M. (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: A mechanism for the “sink-regulation” of photosynthesis? Plant J. 3:817–828.CrossRefGoogle Scholar
  88. Krause, G.H. & Weis, E. (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev. Plant Physiol. Plant Mol. Biol. 42:313–349.CrossRefGoogle Scholar
  89. Kropf, M. (1989) Quantification of SO2 effects on physiological processes, plant growth and crop production. PhD Thesis, Wageningen Agricultural University, the Netherlands.Google Scholar
  90. Kruger, I. & Kluge, M. (1987) Diurnal changes in the regulatory properties of phosphoenolpyruvate carboxylase in plants: Are alterations in the quaternary structure involved? Bot. Acta 101:24–27.Google Scholar
  91. Lawlor, D.W. (1993) Photosynthesis; Molecular, physiological and environmental processes. Longman, London.Google Scholar
  92. Leegood, R.C. & Osmond, C.B. (1990) The flux of metabolites in C4 and CAM plants. In: Plant physiology, biochemistry and molecular biology, D.T. Dennis & D.H. Turpin (eds). Longman Scientific & Technical, Singapore, pp. 274–298.Google Scholar
  93. Lemon, E.R. (ed) (1983) CO2 and Plants. The response of plants to rising atmospheric carbon dioxide. Westview Press, Boulder.Google Scholar
  94. Leverenz, J.W. (1987) Chlorophyll content and the light response curve of shade adapted conifer needles. Physiol. Plant. 71:20–29.CrossRefGoogle Scholar
  95. Livingston, N.J. & Spittlehouse, D.L. (1993) Carbon isotope fractionation in tree rings in relation to the growing season water balance In: Stable isotopes and plant carbon-water relations, J.R. Ehleringer, A.E. Hall, & G.D. Farquhar (eds). Academic Press, San Diego, pp. 141–153.CrossRefGoogle Scholar
  96. Logan, B.A., Barker, D.H., Demmig-Adams, B., & Adams, W.W. III (1996) Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light envoironment within an Australian rainforest. Plant Cell Environ. 19:1083–1090.CrossRefGoogle Scholar
  97. Long, S.P., Baker, N.R., & Raines, C.A. (1993) Analysing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration. Vegetatio 104/105:33–45.CrossRefGoogle Scholar
  98. Madsen, T.V. & Baattrup-Pedersen, A. (1995) Regulation of growth and photosynthetic performance in Elodea canadensis in response to inorganic nitrogen. Func. Ecol. 9:239–247.CrossRefGoogle Scholar
  99. Mansfield, T.A., Hetherington, A.M., & Atkinson, C.J. (1990) Some current aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:55–75.CrossRefGoogle Scholar
  100. Marshall, J.D. & Zhang, J. (1993) Altitudinal variation in carbon isotope discrimination by conifers. In: Stable isotopes and plant carbon-water relations, Ehleringer, J.R., Hall, A.E., & Farquhar, G.D. (eds). Academic Press, San Diego, pp. 187–199.CrossRefGoogle Scholar
  101. Martin, B. & Thorstenson, Y.R. (1988) Stable carbon isotope composition (∂13C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiol. 88:213–217.PubMedCrossRefGoogle Scholar
  102. Mazen, A.M.A. (1996) Changes in levels of phosphoenolpyruvate carboxylase with induction of Crassulacean acid metabolism (CAM)-like behavior in the C4 plant Portulaca oleracea. Physiol. Plant. 98:111–116.CrossRefGoogle Scholar
  103. McConnaughey, T.A., LaBaugh, J.W., Rosenberry, D.O., Striegl, R.G., Reddy, M.M., & Schuster, P.F. (1994) Carbon budget for a groundwater-fed lake: Calcification supports summer photosynthesis. Limnol. Oceanogr. 39:1319–1332.CrossRefGoogle Scholar
  104. Medina, E. & Klinge, H. (1983) Productivity of tropical woodlands. In: Encyclopedia or plant physiology, N.S. Vol. 12D, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 281–303.Google Scholar
  105. Medina, E. (1996) CAM and C4 plants in the humid tropics. In: Tropical forest plant ecophysiology, S.D. Mulkey, R.L. Chazdon, & A.P. Smith (eds). Chapman & Hall, New York, pp. 56–88.CrossRefGoogle Scholar
  106. Meinzer, F., Goldstein, G., & Grantz, D.A. (1990) Carbon isotope discrimination in coffee genotypes grown under limited water supply. Plant Physiol. 92:130–135.PubMedCrossRefGoogle Scholar
  107. Monsi, M. & Saeki, T. (1953) Über den Lichtfaktor in den Pflanzengesellschaften und sein Bedeutung für die Stoffproduktion. Jap. J. Bot. 14:22–52.Google Scholar
  108. Mooney, H.A. (1986) Photosynthesis. In: Plant ecology, M.J. Crawley (ed). Blackwell Scientific Publications, Oxford, pp. 345–373.Google Scholar
  109. Morgan, C.L., Turner, S.R., & Rawsthorne, S. (1992) Cellspecific distribution of glycine decarboxylase in leaves of C3, C4 and C3-C4 intermediate species. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 339–343.Google Scholar
  110. Morison, J.I.L. (1987) Intercellular CO2 concentration and stomatal response to CO2. In: Stomatal function, E. Zeiger, G.D. Farquhar, & I.R. Cowan (eds). Stanford University Press, Stanford, pp. 229–251.Google Scholar
  111. Nakano, Y. & Edwards, G.E. (1987) Hill reaction, hydrogen peroxide scavenging, and ascorbate peroxidase activity or mesophyll and bundle sheath chloroplasts or NADP-malic enzyme type C4 species. Plant Physiol. 85:294–298.PubMedCrossRefGoogle Scholar
  112. Newman, J.R. & Raven, J.R. (1993) Carbonic anhydrase in Ranunculus penicillatus spp. pseudofluitans: Activity, location and implications for carbon assimilation. Plant Cell Environ. 16:491–500.CrossRefGoogle Scholar
  113. Nielsen, S.L., Gacia, E., & Sand-Jensen, K. (1991) Land plants or amphibious Littorella uniflora (L.) Aschers. maintain utilization of CO2 from sediment. Oecologia 88:258–262.CrossRefGoogle Scholar
  114. Nobel, P.S. & Hartsock, T.L. (1990) Diel patterns of CO2 exchange for epiphytic cacti differing in succulence. Physiol. Plant. 78:628–634.CrossRefGoogle Scholar
  115. Nobel, P.S., Garcia-Moya, E., & Quero, E. (1992) High annual productivity of certain agaves and cacti under cultivation. Plant Cell Environ. 15:329–335.CrossRefGoogle Scholar
  116. Ögren, E. (1993) Convexity of the photosynthetic lightresponse curve in relation to intensity and direction of light during growth. Plant Physiol. 101:1013–1019.PubMedGoogle Scholar
  117. Ogren, W.L. (1984) Photorespiration: Pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35:415–442.CrossRefGoogle Scholar
  118. O’Leary, M.H. (1993) Biochemical basis of carbon isotope fractionation. In: Stable isotopes and plant carbon-water relations, J.R. Ehleringer, A.E. Hall, & G.D. Farquhar (eds). Academic Press, San Diego, pp. 19–28.Google Scholar
  119. Oquist, G., Brunes, L., & Hällgren, J.E. (1982) Photosynthetic efficiency of Betula pendula acclimated to different quantum flux densities. Plant Cell Environ. 5:9–15.Google Scholar
  120. Osmond, C.B. & Holtum, J.A.M. (1981) Crassulacean acid metabolism. In: The biochemistry of plants. A comprehensive treatise, Vol. 8, P.K. Stumpf & E.E. Conn (eds). Academic Press, New York.Google Scholar
  121. Osmond, C.B., Björkman, O., & Anderson, D.J. (1980) Physiological processes in plant ecology, ecological studies, Vol. 36. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  122. Osmond, C.B., Winter, K., & Ziegler, H. (1982) Functional significance or different pathways or CO2 fixation in photosynthesis. In: Encyclopedia or plant physiology, N.S. Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 479–548.Google Scholar
  123. Patel, A. & Ting, I.P. (1987) Relationship between respiration and CAM-cycling in Peperomia camptotricha. Plant Physiol. 84:640–642.PubMedCrossRefGoogle Scholar
  124. Pearcy, R.W. (1988) Photosynthetic utilisation of lightflecks by understorey plants. Aust. J. Plant Physiol. 15: 223–238.CrossRefGoogle Scholar
  125. Pearcy, R.W. (1990) Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:421–453.CrossRefGoogle Scholar
  126. Pearcy, R.W., Osteryoung, K., & Calkin, H.W. (1985) Photosynthetic responses to dynamic light environments by Hawaiian trees. Time course of CO2 uptake and carbon gain during sunflecks. Plant Physiol. 79:896–902.PubMedCrossRefGoogle Scholar
  127. Peisker, M. & Henderson, S.A. (1992) Carbon: Terrestrial C4 plants. Plant Cell Environ. 15:987–1004.CrossRefGoogle Scholar
  128. Plaut, Z., Mayoral, M.L., & Reinhold, L. (1987) Effect of altered sink: Source ratio on photosynthetic metabolism of source leaves. Plant Physiol. 85:786–791.PubMedCrossRefGoogle Scholar
  129. Pons, T.L. & Pearcy, R.W. (1992) Photosynthesis in flashing light in soybean leaves grown in different conditions. II. Lightfleck utilization efficiency. Plant Cell Environ. 15:577–584.CrossRefGoogle Scholar
  130. Pons, T.L., Schieving, F., Hirose, T., & Werger, M.J.A. (1989) Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris. In: Causes and consequences of variation in growth rate and productivity of higher plants, H. Lambers, M.L. Cambridge, H. Konings, & T.L. Pons (eds). SPB Academic Publishing, The Hague, pp. 175–186.Google Scholar
  131. Pons, T.L., Pearcy, R.W., & Seemann, J.R. (1992) Photosynthesis in flashing light in soybean leaves grown in different conditions. I. Photosynthetic induction state and regulation of ribulose-1,5-bisphosphate carboxylase activity. Plant Cell Environ. 15:569–576.CrossRefGoogle Scholar
  132. Pons, T.L., Van der Werf, A., & Lambers, H. (1994) Photosynthetic nitrogen use efficiency of inherently slow- and fast-growing species: Possible explanations for observed differences. In: A Whole-plant perspective of carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, pp. 61–77.Google Scholar
  133. Poorter, L., Oberbauer, S.F., & Clark, D.B. (1995) Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. Am. J. Bot. 82:1257–1263.CrossRefGoogle Scholar
  134. Poot, P., Pilon, J., & Pons, T.L. (1996) Photosynthetic characteristics of leaves of male sterile and hermaphroditic sex types of Plantago lanceolata grown under conditions of contrasting nitrogen and light availabilities. Physiol. Plant. 98:780–790.CrossRefGoogle Scholar
  135. Potvin, C. (1986) Differences in photosynthetic characteristics among northern and southern C4 plants. Physiol. Plant. 69:659–664.CrossRefGoogle Scholar
  136. Powel, A.M. (1978) Systematics of Flaveria (Flaveriinae Asteraceae). Ann. Missouri Bot. Garden 65:590–636.CrossRefGoogle Scholar
  137. Prins, H.B.A. & Elzenga, J.T.M. (1989) Bicarbonate utilization: function and mechanism. Aquat. Bot. 34:59–83.CrossRefGoogle Scholar
  138. Prins, H.B.A., Snel, J.F.H., Zanstra, P.E., & Helder, R.J. (1982) The mechanism of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea. CO2 concentrations at the leaf surface. Plant Cell Environ. 5:207–214.Google Scholar
  139. Pyankov, V.I. & Kondratchuk, A.V. (1995) The specific features of structure of photosynthetic apparatus of plants of the East Pamirs. Proc. Russian Acad. Sci. 344:712–716 (in Russian).Google Scholar
  140. Pyankov, V.I. & Kondratchuk, A.V. (1998) Meso-structure of photosynthetic apparatus of tree plants of The East Pamirs of different ecological and altitudinal groups. Russian J. Plant Physiol., in press.Google Scholar
  141. Prins, H.B.A. & de Guia, M.B. (1986) Carbon source of the water soldier, Stratiotes aloides L. Aquat. Bot. 26:225–234.CrossRefGoogle Scholar
  142. Quick, W.P., Chaves, M.M., Wendler, R., David, M., Rodrigues, M.L., Passaharinho, J.A., Pereira, J.S., Adcock, M.D., Leegood, R.C., & Stitt, M. (1992) The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ. 15:25–35.CrossRefGoogle Scholar
  143. Rajendrudu, G., Prasad, J.S.R., & Das, V.S.R. (1986) C3 C4- intermediate species in Alternanthera (Amaranthaceae). Leaf anatomy, CO2 compensation point, net CO2 exchange and activities or photosynthetic enzymes. Plant Physiol. 80:409–414.PubMedCrossRefGoogle Scholar
  144. Ray, T.B. & Black, C.C. (1979) The C4 and crassulacean acid metabolism pathways. In: Encyclopedia of plant physiology, N.S. Vol. 6, M. Gibbs & E. Latzko (eds). Springer-Verlag, Berlin, pp. 77–101.Google Scholar
  145. Raymo, M.E. & Ruddiman, W.F. (1992) Tectonic torcing ot late Cenozoic climate. Nature 359:117–122.CrossRefGoogle Scholar
  146. Reich, P.B. & Schoettle, A.W. (1988) Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia 77:25–33.CrossRefGoogle Scholar
  147. Reich, P.B., Koike, T., Gower, S.T., & Schoettle, A.W. (1995) Causes and consequences of variation in conifer leaf life-span, In: Ecophysiology of coniferous forests, W.K. Smith & T.M. Hinckley (eds). Academic Press, San Diego, pp. 225–254.Google Scholar
  148. Reiskind, J.B., Madsen, T.V., Van Ginkel, L.C., & Bowes, G. (1997) Evidence that inducible C4- type photosynthesis is a chloroplastic CO2- concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ. 20:211–220.CrossRefGoogle Scholar
  149. Rozema, J., Lambers, H., Van de Geijn, S.C., & Cambridge, M.L. (1992) CO2 and Biosphere. Kluwer, Dordrecht.Google Scholar
  150. Rundel, P.W. & Sharifi, M.R. (1993) Carbon isotope discrimination and resource availability in the desert shrub Larrea tridentata, In: Stable isotopes and plant carbonwater relations, J.R. Ehleringer, A.E. Hall, & G.D. Farquhar (eds). Academic Press, San Diego, pp. 173–185.CrossRefGoogle Scholar
  151. Sage, R.F. & Sharkey, T.D. (1987) The effect of temperature on the occurrence of 02 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol. 84:658–664.PubMedCrossRefGoogle Scholar
  152. Sage, R.F. & Pearcy, R.W. (1987a) The nitrogen use efficiency or C3 and C4 plants. I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus. Plant Physiol. 84:954–958.PubMedCrossRefGoogle Scholar
  153. Sage, R.F. & Pearcy, R.W. (1987b) The nitrogen use efficiency or C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics or Chenopodium album (L.) and Amaranthus retroflexus. Plant Physiol. 84:959–963.PubMedCrossRefGoogle Scholar
  154. Sage, R.F., Sharkey, T.D., & Seemann, J.R. (1989) Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89:590–596.PubMedCrossRefGoogle Scholar
  155. Salvucci, M.E. (1989) Regulation of Rubisco activity in vivo. Physiol. Plant. 77:164–171.CrossRefGoogle Scholar
  156. Sassenrath-Cole, G.F., Pearcy, R.W., & Steinmaus, S. (1994) The role of enzyme activation state in limiting carbon assimilation under variable light conditions. Photosynth. Res. 41:295–302.CrossRefGoogle Scholar
  157. Scheller, H.V. & Moller, B.L. (1990) Photosystem I polypeptides. Physiol. Plant. 78:484–494.CrossRefGoogle Scholar
  158. Schlesinger, W.H. (1993) Response of the terrestrial biosphere to global climate change and human perturbation. Vegetatio 104/105:295–305.CrossRefGoogle Scholar
  159. Schimel, D.S. (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol. 1:77–91.CrossRefGoogle Scholar
  160. Schulze, E.-D. (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol. 37:247–274.CrossRefGoogle Scholar
  161. Schulze, E.D. & Hall, A.E. (1982) Stomatal responses, water loss and CO2 assimilation rates of plants from contrasting environments. In: Encyclopedia of plant physiology new series (Physiological plants ecology II, Water relations and carbon assimilation) V. 12B. Springer Verlag, Berlin, pp. 181–230.CrossRefGoogle Scholar
  162. Schulze, E.-D., Kelliher, F.M., Körner, C., Lloyd, J., & Leuning, R. (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25:629–660.CrossRefGoogle Scholar
  163. Seemann, J.R. (1989) Light adaptation/acclimation of photosynthesis and the regulation of ribulose-1,5bisphosphate carboxylase activity in sun and shade plants. Plant Physiol. 91:379–386.PubMedCrossRefGoogle Scholar
  164. Servaites, J.C. (1990) Inhibition of ribulose 1,5bisphosphate carboxylase/oxygenase by 2carboxyarabinitol-1-phosphate. Plant Physiol. 92:867–870.PubMedCrossRefGoogle Scholar
  165. Seemann, J.R., Badger, M.R., & Berry, J.A. (1984) Variations in the specific activity of ribulose-1,5bisphosphate carboxylase between species utilizing differing photosynthetic pathways. Plant Physiol. 74:791–794.PubMedCrossRefGoogle Scholar
  166. Sharkey, T.D., Seemann, J.R., & Pearcy, R.W. (1986a) Contribution of metabolites of photosynthesis to postillumination CO2 assimilation in response to lightflecks. Plant Physiol. 82:1063–1068.PubMedCrossRefGoogle Scholar
  167. Sharkey, T.D., Stitt, M., Heineke, D., Gerhardt, R., Raschke, K., & Heldt, H.W. (1986b) Limitation of photosynthesis by carbon metabolism. II. CO2-insensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol. 81:1123–1129.PubMedCrossRefGoogle Scholar
  168. Sims, D.A. & Pearcy, R.W. (1989) Photosynthetic characteristics of a tropical forest understorey herb, Alocasia macrorrhiza, and a related crop species, Colocasia esculenta, grown in contrasting light environments. Oecologia 79:53–59.CrossRefGoogle Scholar
  169. Smedley, M.P., Dawson, T.E., Comstock, J.P., Donovan, L.A., Sherrill, D.E., Cook, C.S., & Ehleringer, J.R. (1991) Seasonal carbon isotope discrimination in a grassland community. Oecologia 85:314–320.CrossRefGoogle Scholar
  170. Smith, H., Samson, G., & Fork, D.C. (1993) Photosynthetic acclimation to shade: Probing the role of phytochromes using photomorphogenetic mutants of tomato. Plant Cell Environ. 16:929–937.CrossRefGoogle Scholar
  171. Staal, M., Elzenga, J.T.M., & Prins, H.B.A. (1989) 14CO2 fixation by leaves and leaf cell protoplasts of the submerged aquatic angiosperm Potamogeton lucens: Carbon dioxide or bicarbonate? Plant Physiol. 90:1035–1040.PubMedCrossRefGoogle Scholar
  172. Sternberg, L.O., DeNiro, M.J., & Johnson, H.B. (1984) Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiol. 74:557–561.PubMedCrossRefGoogle Scholar
  173. Stitt, M. (1997) The flux of carbon between the chloroplast and the cytoplasm. In: Plant metabolism, D.T. Dennis, D.H. Turpin, D.D. Lefebvre, & D.B. Layzell (eds). Longman Scientific and Technical, Singapore, pp. 382–400.Google Scholar
  174. Terashima, I. & Hikosaka, K. (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18:1111–1128.CrossRefGoogle Scholar
  175. Terashima, I., Wong, S.C., Osmond, C.B., & Farquhar, G.D. (1988) Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol. 29:385–394.Google Scholar
  176. Ting, I.T. (1985) Crassulacean acid metabolism. Annu. Rev. Plant Physiol. 36:595–622.CrossRefGoogle Scholar
  177. Van Oosten, J.-J. & Besford, R.T. (1995) Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations. Plant Cell Environ. 18:1253–1266.CrossRefGoogle Scholar
  178. Van Oosten, J.J., Wilkins, D., & Besford, R.T. (1995) Acclimation of tomato to different carbon dioxide concentrations. Relationships between biochemistry and gas exchange during leaf development. New Phytol. 130:357–367.CrossRefGoogle Scholar
  179. Vernon, D.M., Ostrem, J.A., Schmitt, J.M., & Bohnert, H. (1988) PEPCase transcript levels in Mesembryanthemum crystallinum decline rapidly upon relief from salt stress. Plant Physiol. 86:1002–1004.PubMedCrossRefGoogle Scholar
  180. Vitousek, P.M., Field, C.B., & Matson, P.A. (1990) Variation in foliar ∂13C in Hawaiian Metrosideros polymorpha: A case of internal resistance? Oecologia 84:362–370.Google Scholar
  181. Vogelmann, T.C., Nishio, J.N., & Smith, W.K. (1996) Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends in Plant Science 1:65–70.CrossRefGoogle Scholar
  182. Von Caemmerer, S. (1989) A model of photosynthetic CO2 assimilation and carbon-isotope discrimination in leaves of certain C3—C4 intermediates. Planta 178:463–474.CrossRefGoogle Scholar
  183. Von Caemmerer, S. & Farquhar, G.D. (1984) Effects of partial defoliation, changes of irradiance during growth, short-term water stress and growth at enhanced p(CO2) on photosynthetic capacity of leaves of Phaseolus vulgaris L. Planta 160:320–329.CrossRefGoogle Scholar
  184. Von Caemmerer, S., Evans, J.R., Hudson, G.S., & Andrews, T.J. (1994) The kinetics of ribulose-1,5bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97.CrossRefGoogle Scholar
  185. Walker, D.A. (1980) Regulation of starch synthesis in leaves. The role of orthophosphate. In: Physiological aspects of crop productivity. International Potash Institute, Bern, pp. 195–207.Google Scholar
  186. Weger, H.G., Silim, S.N., & Guy, R.D. (1993) Photosynthetic acclimation to low temperature by western red cedar seedlings. Plant Cell Environ. 16:711–717.CrossRefGoogle Scholar
  187. Willeford, K.O. & Wedding, R.T. (1987) pH effects on the activity and regulation of the NAD malic enzyme. Plant Physiol. 84:1080–1083.CrossRefGoogle Scholar
  188. Winner, W.E. & Mooney, H.A. (1980a) Ecology of SO2 resistance. I. Effects of fumigations on gas exchange of deciduous and evergreen shrubs. Oecologia 44:290–295CrossRefGoogle Scholar
  189. Winner, W.E. & Mooney, H.A. (1980b) Ecology of SO2 resistance. II. Photosynthetic changes of shrubs in relation to SO2 absorption and stomatal behavior. Oecologia 44:296–302.CrossRefGoogle Scholar
  190. Winter, K. & Smith, J.A.C. (1996) An introduction to crassulaceaen acid metabolism. Biochemical principles and ecological diversity. In: Crassulacean acid metabolism, biochemistry, ecophysiology and evolution. Ecological Studies 114, K. Winter & J.A.C. Smith (eds). Springer-Verlag, Berlin, pp. 1–13.CrossRefGoogle Scholar
  191. Winter, K., Zotz, G., Baur, B., & Dietz, K.-J. (1992) Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia 91:47–51.CrossRefGoogle Scholar
  192. Wu, M.-X. & Wedding, R.T. (1985) Regulation of phosphoenolpyruvate carboxylase from Crassula by interconversion of oligomeric forms. Arch. Biochem. Biophys. 240:655–662.PubMedCrossRefGoogle Scholar
  193. Wu, M.-X. & Wedding, R.T. (1987) Regulation of phosphoenolpyruvate carboxylase from Crassula argentea. Further evidence on the dimer-tetramer interconversion. Plant Physiol. 84:1084–1087.CrossRefGoogle Scholar
  194. Yeoh, H.-H., Badger, M.R., & Watson, L. (1981) Variations in kinetic properties of ribulose-1,5-bisphosphate carboxylase among plants. Plant Physiol. 67:1151–1155.PubMedCrossRefGoogle Scholar
  195. Young, D.R. & Smith, W.K. (1983) Effect of cloudcover on photosynthesis and transpiration in the subalpine understory species Arnica latifolia. Ecology 64:681–687.CrossRefGoogle Scholar
  196. Alpi, A., Perata, P., & Beevers, H. (1985) Physiological responses of cereal seedlings to ethanol. J. Plant Physiol. 119:77–85.CrossRefGoogle Scholar
  197. Armstrong, W., Armstrong, J., Beckett, P.M., & Justin, S.H.F.W. (1991) Convective gas-flows in wetland plant aeration. In: Plant life under oxygen deprivation, M.B. Jackson, D.D. Davies, & H.H. Lambers, (eds). SPB Academic Publishing, The Hague, pp. 283–302.Google Scholar
  198. Armstrong, W., Jackson, M.B., & Brändle, R. (1994) Mechanisms of flood tolerance in plants. Acta Bot. Neerl. 43:307–358.Google Scholar
  199. Andrews, D.L., Cobb, B.G., Johnson, J.R., & Drew, M.C. (1993) Hypoxic and anoxic induction of alcohol dehydrogenase in roots and shoots of seedlings of Zea mays. Adh transcripts and enzyme activities. Plant Physiol. 101:407–414.PubMedGoogle Scholar
  200. Atkin, O.K., Villar, R., & Lambers, H. (1995) Partitioning of electrons between the cytochrome and the alternative pathways in intact roots. Plant Physiol. 108:1179–1183.PubMedGoogle Scholar
  201. Azcón-Bieto, J., Lambers, H., & Day, D.A. (1983) Effect of photosynthesis and carbohydrate status on respiratory rates and the involvement of the alternative pathway in leaf respiration. Plant Physiol. 72:598–603.CrossRefGoogle Scholar
  202. Bahr, J.T. & Bonner, W.D. (1973) Cyanide-insensitive respiration. II. Control of the alternate pathway. J. Biol. Chem. 248:3446–3450.PubMedGoogle Scholar
  203. Ben Zioni, A., Vaadia, Y., & Lips, S.H. (1971) Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol. Plant. 24:288–290.CrossRefGoogle Scholar
  204. Billings, W.D., Godfrey, P.J., Chabot, B.F., & Bourque, D.P. (1971) Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna. Arct. Alpi. Res. 4:227–289.Google Scholar
  205. Bingham, I.J. & Farrar, J.F. (1988) Regulation of respiration in barley roots. Physiol. Plant. 73:278–285.CrossRefGoogle Scholar
  206. Blanke, M.M. & Whiley, A.W. (1995) Bioenergetics, respiration costs and water relations of developing avocado fruit. J. Plant Physiol. 145:87–92.CrossRefGoogle Scholar
  207. Bouma, T. & De Visser, R. (1993) Energy requirements for maintenance of ion concentrations in roots. Physiol. Plant. 89:133–142.CrossRefGoogle Scholar
  208. Bouma, T., De Visser, R., Janssen, J.H.J.A., De Kock, M.J., Van Leeuwen, P.H., & Lambers, H. (1994) Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its effect. Physiol. Plant. 92:585–594.CrossRefGoogle Scholar
  209. Bouma, T., Broekhuysen, A.G.M., & Veen, B.W. (1996) Analysis of root respiration of Solanum tuberosum as related to growth, ion uptake and maintenance of biomass: A comparison of different methods. Plant Physiol. Biochem. 34:795–806.Google Scholar
  210. Bouma, T., Nielsen, K.L., Eissenstat, D.M., & Lynch, J.P. (1997) Estimating respiration of roots in soil: Interactions with soil CO2, soil temperature and soil water content. Plant Soil. 195:221–232.CrossRefGoogle Scholar
  211. Chapin III, F.S. (1989) The costs of tundra plant structures: Evaluation of concepts and currencies Am. Nat. 133:1–19.CrossRefGoogle Scholar
  212. Chapman, K.S.R. & Hatch, M.D. (1977) Regulation of mitochondrial NAD-malic enzyme involved in C4 pathway photosynthesis. Arch. Biochem. Biophys. 184:298–306.PubMedCrossRefGoogle Scholar
  213. Collier, D.E. & Cummins, W.R. (1996) The rate of development of water deficits affects Saxifraga cernua leaf respiration. Physiol. Plant. 96:291–297.CrossRefGoogle Scholar
  214. Collier, D.E. & Cummins, W.R. (1991) Respiratory shifts in developing petals of Saxifraga cernua. Plant Physiol. 95:324–328.PubMedCrossRefGoogle Scholar
  215. Collier, D.E., Ackermann, F., Somers, D.J., Cummins, W.R., & Atkin, O.K. (1993) The effect of aluminium exposure on root respiration in an aluminium-sensitive and an aluminium-tolerant cultivar of Triticum aestivum. Physiol. Plant. 87:447–452.CrossRefGoogle Scholar
  216. Criddle, R.S., Hopkin, M.S., McArthur, E.D., & Hansen, L.D. (1994) Plant distribution and the temperature coefficient of metabolism. Plant Cell Environ. 17:233–243.CrossRefGoogle Scholar
  217. Dacey, J.W.A. (1980) Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210:1017–1019.PubMedCrossRefGoogle Scholar
  218. Dacey, J.W.A. (1987) Knudsen-transitional flow and gas pressurization in leaves of Nelumbo. Plant Physiol. 85:199–203.PubMedCrossRefGoogle Scholar
  219. Davies, D.D. (1979) Factors affecting protein turnover in plants. In: Nitrogen assimilation of plants, E.J. Hewitt & C.V. Cutting (eds). Academic Press, London, pp. 369–396.Google Scholar
  220. Day, D.A., Whelan, J., Millar, A.H., Siedow, J.N., & Wiskich J.T. (1995) Regulation of the alternative oxidase in plants and fungi. Aust. J. Plant Physiol. 22:497–509.CrossRefGoogle Scholar
  221. Day, D.A., Whelan, J., Millar, A.H., Siedow, J.N., & Wiskich, J.T. (1995) Regulation of the alternative oxidase in plants and fungi. Aust. J. Plant Physiol. 22:497–509.CrossRefGoogle Scholar
  222. Day, D.A., Krab, K., Lambers, H., Moore, A.L., Siedow, J.N., Wagner, A.M., & Wiskich, J.T. (1996) The cyanideresistant oxidase: To inhibit or not to inhibit, that is the question. Plant Physiol. 110:1–2.PubMedGoogle Scholar
  223. DeBoer, A.H. & Wegner, L.H. (1997) Regulatory mechanisms of ion channels in xylem parenchyma cells. J. Exp. Bot. 48:441–449.CrossRefGoogle Scholar
  224. De Jong, T.M. & Walton, E.F. (1989) Carbohydrate requirements of peach fruits, growth and respiration. Tree Physiol. 5:329–335.CrossRefGoogle Scholar
  225. De Lima, M.L. & Copeland, L. (1994) The effect of aluminium on respiration of wheat roots. Physiol. Plant. 90:51–58.CrossRefGoogle Scholar
  226. De Visser, R., Spreen Brouwer, K., & Posthumus, F. (1986) Alternative path mediated ATP synthesis in roots of Pisum sativum upon nitrogen supply. Plant Physiol. 80:295–300.PubMedCrossRefGoogle Scholar
  227. De Visser, R., Spitters, C.J.T., & Bouma, T. (1992) Energy costs of protein turnover: Theoretical calculation and experimental extimation from regression of respiration on protein concentration of full-grown leaves. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 493–508.Google Scholar
  228. Dry, I.B., Moore, A.L., Day, D.A., & Wiskich, J.T. (1989) Regulation of alternative pathway activity in plant mitochondria. Non-linear relationship between electron flux and the redox poise of the quinone pool. Arch. Biochem. Biophvs. 273:148–157.CrossRefGoogle Scholar
  229. El Kohen, A., Pontailler, J.-Y., & Mousseau, M. (1991) Effect of doubling of atmospheric CO2 concentration on dark respiration in aerial parts of young chestnut trees (Castanea sativa Mill.). C.R. Acad. Sci, Paris, t. 312, Series III: 477–481.Google Scholar
  230. Elthon, T.E. & Stewart, C.R. (1983) A chemiosmotic model for plant mitochondria. BioScience 33:687–692.CrossRefGoogle Scholar
  231. Evans, L.T. (1980) The natural history of crop yield. Amer. Scientist 68:388–397.Google Scholar
  232. Farrar, J.F. (1992) Beyond photosynthesis: the translocation and respiration of diseased leaves. In: Pests and pathogens, P.G. Ayres (ed). Bios Scientific Publishers, Oxford, pp. 107–127.Google Scholar
  233. Farrar, J.F. & Jones, C.L. (1986) Modification of respiration and carbohydrate status of barley roots by selective pruning. New Phytol. 102:513–521.CrossRefGoogle Scholar
  234. Farrar, J.F. & Rayns, F.W. (1987) Respiration of leaves of barley infected with powdery mildew: Increased engagement of the alternative oxidase. New Phytol. 102:119–125.CrossRefGoogle Scholar
  235. Fredeen, A.L. & Field, C.B. (1991) Leaf respiration in Piper species native to a Mexican rainforest. Physiol. Plant. 82:85–92.CrossRefGoogle Scholar
  236. Gloser, V., Scheurwater, I., & Lambers, H. (1996) The interactive effect of irradiance and source of nitrogen on growth rate and root respiration of Calamagrostis epigeios. New Phytol. 134:407–412.CrossRefGoogle Scholar
  237. Gonzalez-Meler, Ribas-Carbo, M., Siedow, J.N., & Drake, B.G. (1996) Direct inhibition of plant respiration by elevated CO2. Plant Physiol. 112:1349–1355.PubMedGoogle Scholar
  238. Good, B.J. & Patrick, W.H. (1987) Gas composition and respiration of water oak (Quercus nigra L.) and green ash (Fraxinus pennsylvanica Marsh.) roots after prolonged flooding. Plant Soil 97:419–427.CrossRefGoogle Scholar
  239. Guglielminetti, L., Yamaguchi, J., Perata, P., & Alpi, A. (1995) Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol. 109:1069–1076.PubMedGoogle Scholar
  240. Gonzalez-Meler, M.A. (1995) Effect of increasing concentration of atmospheric carbon dioxide on plant respiration. PhD Thesis, Universitat de Barcelona, Barcelona.Google Scholar
  241. Guy, R.D., Berry, J.A., Fogel, M.L., Turpin, D.H., & Weger, H.G. (1992) Fractionation of the stable isotopes of oxygen during respiration by plants—the basis of a new technique to estimate partitioning to the alternative path. In: Plant respiration. molecular, biochemical and physiological aspects, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 443–453.Google Scholar
  242. Hagesawa, R., Muruyama, A., Nakaya, M., & Esashi, Y. (1995) The presence of two types of β3-cyanoalanine synthase in germinating seeds and their response to ethylene. Physiol. Plant. 93:713–718.CrossRefGoogle Scholar
  243. Hemrika-Wagner, A.M., Kreuk, K.C.M., & Van der Plas, L.H.W. (1982) Influence of growth temperature on respiratory characteristics of mitochondria from callusforming potato tuber discs. Plant Physiol. 70:602–605.PubMedCrossRefGoogle Scholar
  244. Hoefnagel, M.H.N., Millar, A.H., Wiskich, J.T., & Day, J.T. (1995) Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch. Biochem. Biophys. 318:394–400.PubMedCrossRefGoogle Scholar
  245. Hoefnagel, M.H.N. & Wiskich, J.T. (1996) Alternative oxidase activity and the ubiquinone redox level in soybean cotyledon and Arum spadix mitochondria during NADH and succinate oxidation. Plant Physiol. 110:1329–1335.PubMedGoogle Scholar
  246. Jackson, M.B., Hermann, B., & Goodenough, A. (1982) An examination of the importance of ethanol in causing injury to flooded plants. Plant Cell Environ. 5:163–172.Google Scholar
  247. Klikoff, L.C. (1966) Temperature dependence of the oxidative rates of mitochondria in Danthonia intermedia, Pentstemon davidsonii and Sitanion hystrix. Nature 212:529–530.CrossRefGoogle Scholar
  248. Konings, H. & Lambers, H. (1990) Respiratory metabolism, oxygen transport and the induction of aerenchyma in roots. In: Plant life under oxygen deprivation, M.B. Jackson, D.D. Davies, & H. Lambers (eds). SPB Academic Publishing, The Hague, pp. 247–265.Google Scholar
  249. Körner, C. & Larcher, W. (1988) Plant life in cold environments. In: Plants and temperature. Symposium of the Society of Experimental Biology, Vol. 42, S.P. Long & F.I. Woodward (eds). The Company of Biologists, Cambridge, pp. 25–57.Google Scholar
  250. Knutson, R.M. (1974) Heat production and temperature regulation in eastern skunk cabbage. Science 186:746–747.PubMedCrossRefGoogle Scholar
  251. Krapp, A. & Stitt, M. (1994) Influence of high carbohydrate content on the activity of plastidic and cytosolic isozyme pairs in photosynthetic tissues. Plant Cell Environ 17:861–866CrossRefGoogle Scholar
  252. Lambers, H. (1985) Respiration in intact plants and tissue: Its regulation and dependence on environmental factors, metabolism and invaded organisms. In: Encyclopedia of plant physiology, N.S. Vol. 18, R. Douce and D.A. Day (eds). Springer-Verlag, Berlin, pp. 418–473.Google Scholar
  253. Lambers, H. (1997a) Oxidation of mitochondrial NADH and the synthesis of ATP. In: Plant physiology, biochemistry and molecular biology, D.T. Dennis, D.H. Turpin, D. Lefebvre, & D.B Layzell (eds). Longmon, London, pp. 200–219.Google Scholar
  254. Lambers, H. (1997b) Respiration and the alternative oxidase. In: A Molecular approach to primary metablism in plants, C.H. Foyer & P. Quick (eds). Taylor and Francis, London, pp. 295–309.Google Scholar
  255. Lambers, H. & Van der Plas, L.H.W. (eds) (1992) Molecular, biochemical and physiological aspects of plant respiration. SPB Academic Publishing, The Hague.Google Scholar
  256. Lambers, H. & Van der Werf, A. (1988) Variation in the rate of root respiration of two Carex species: A comparison of four related methods to determine the energy requirements for growth, mintenance and ion uptake. Plant Soil 111:207–211.CrossRefGoogle Scholar
  257. Lambers, H., Atkin, O.K., & Scheurwater, I. (1996) Respiratory patterns in roots in relation to their functioning. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds). Marcel Dekker, Inc. New York, pp. 323–362.Google Scholar
  258. Lambers, H., Scheurwater, I., Mata, C., & Nagel, O.W. (1998) Root respiration of fast- and slow-growing plants, as dependent on genotype and nitrogen supply: A major clue to the functioning of slow-growing plants. In: Inherent variation in plant growth. Physiological mechanisms and ecological consequences. H. Lambers, H. Poorter & M.M.I. Van Vuuren (eds). Backhuys, Leiden, in press.Google Scholar
  259. Lance, C., Chauveau, M., & Dizengremel, P. (1985) The cyanide-resistant of plant mitochondria. In: Encyclopedia of plant physiology, R. Douce & D.A. Day (eds). Springer-Verlag, Berlin, pp. 202–247.Google Scholar
  260. Larigauderie, A. & Körner, C. (1995) Acclimation of dark leaf respiration to temperature in alpine and lowland plant species. Ann. Bot. 76:245–252.CrossRefGoogle Scholar
  261. Laties, G.G. (1998) The discovery of the cyanide-resistant alternative path and its’ aftermat. In: Discoveries in plant biology, Vol. 1, S.-D. Kung & S.F. Yang (eds). World Scientific Publishing Co., Hong Kong University of Science and Technology, Hong Kong, in press.Google Scholar
  262. Levin, D.A. (1974) The oil content of seeds: an ecological perspective. Am. Nat. 108:193–206.CrossRefGoogle Scholar
  263. Mata, C., Scheurwater, I., Martins-Louçao, M.-A., & Lambers, H. 1996. Root respiration, growth and nitrogen uptake of Quercus suber L. seedlings. Plant Physiol. Biochem. 34:727–734.Google Scholar
  264. McDermitt, D.K. & Loomis, R.S. (1981) Elemental composition of biomass and its relation to energy content, growth efficiency and growth yield. Ann. Bot. 48:275–290Google Scholar
  265. McDonnel, E. & Farrar, J.F. (1992) Substrate supply and its effect on mitochondrial and whole tissue respiration in barley roots. In: Plant respiration. molecular, biochemical and physiological aspects, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 455–462.Google Scholar
  266. McIntosh, L. (1994) Molecular biology of the alternative oxidase. Plant Phvsiol. 105:781–786.CrossRefGoogle Scholar
  267. Meeuse, B.J.D. (1975) Thermogenic respiration in aroids. Annu. Rev. Plant Physiol. 26:117–126.CrossRefGoogle Scholar
  268. Millar, A.H. & Day, D.A. (1997) Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett., in pressGoogle Scholar
  269. Millar, A.H., Hoefnagel, M.H.N., Day, D.A., & Wiskich, J.T. (1996) Specificity of the organic acid activation of the alternative oxidase in plant mitochondria. Plant Physiol. 111: 613–618.PubMedGoogle Scholar
  270. Miller, P.C. & Stoner, W.A. (1979) Canopy structure and environmental interactions. In: Topics in plant population biology, O.T. Solbrig, S. Jain, G.B. Johnson, & P.H. Raven (eds). Columbia University Press, New York, pp. 428–458.Google Scholar
  271. Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41:445–502.PubMedCrossRefGoogle Scholar
  272. Mooney, H.A. & Billings, W.D. (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol. Monogr. 31:1–29.CrossRefGoogle Scholar
  273. Moynihan, M.R., Ordentlich, A., & Raskin, I. (1995) Chilling-induced heat evolution in plants. Plant Physiol. 108:995–999.PubMedGoogle Scholar
  274. Neuberger, M. & Douce, R. (1980) Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Biochim. Biophys. Acta 589:176–189.CrossRefGoogle Scholar
  275. Nobel, P.S. & Palta, J.A. (1989) Soil 02 and CO2 effects on root respiration of cacti. Plant Soil 120:263–271.CrossRefGoogle Scholar
  276. Noguchi, K. & Terashima, I. (1997) Different regulation of leaf respiration between Spinacia oleracea, a sun species, and Alocasia odora, a shade species. Physiol. Plant. 101: 1–7.CrossRefGoogle Scholar
  277. Noguchi, K., Sonoike, K., & Terashima, I. (1996) Acclimation of respiratory properties of leaves of Spinacia oleracea (L.), a sun species, and of Alocasia macrorrhiza (L.) G. Don., a shade species, to changes in growth irradiance. Plant Cell Physiol. 37:377–384.CrossRefGoogle Scholar
  278. Ordentlich, A., Linzer, R.A., & Raskin, I. (1991) Alternative respiration and heat evolution in plants. Plant Physiol. 97:1545–1550.PubMedCrossRefGoogle Scholar
  279. Palet, A., Ribas-Carbo, M., Argiles, J.M., & Azcón-Bieto, J. (1991) Short-term effects of carbon dioxide on carnation callus cell respiration. Plant Physiol. 96:467–472.PubMedCrossRefGoogle Scholar
  280. Palet, A., Ribas-Carbo, M., Gonzalez-Meler, M.A., Aranda, X., & Azcón-Bieto, J. (1992) Short-term effects of CO2/bicarbonate on plant respiration. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 597–602.Google Scholar
  281. Palta, J.A. & Nobel, P.S. (1989) Influence of soil 02 and CO2 on root respiration for Agave deserti. Physiol. Plant. 76:187–192.CrossRefGoogle Scholar
  282. Penning de Vries, F.W.T. (1975) The cost of maintenance processes in plant cells. Ann. Bot. 39:77–92.Google Scholar
  283. Penning de Vries, F.W.T., Brunsting, A.H.M., & Van Laar, H.H. (1974) Products, requirements and efficiency of biosynthesis: A quantitative approach. J. Theor. Biol. 45:339–377.PubMedCrossRefGoogle Scholar
  284. Perata, P. & Alpi, A. (1991) Ethanol induces injuries to carrot cells. Plant Physiol. 95:748–752.PubMedCrossRefGoogle Scholar
  285. Perata, P. & Alpi, A. (1993) Plant responses to anaerobiosis. Plant Sci. 93:1–17.CrossRefGoogle Scholar
  286. Perata, P., Pozueta-Romero, J., Akazawa, T., & Yamaguchi, J. (1992) Effect of anoxia on the induction of a-amylase in cereal seeds. Planta 191:402–408.Google Scholar
  287. Poorter, H. (1994) Construction costs and payback time of biomass: A whole plant perspective. In: A whole plant perspective on carbon-nitrogen interactions, J. Roy & E. Garnier (eds). The Hague, SPB Academic Publishing, pp. 111–127.Google Scholar
  288. Poorter, H. & Villar, R. (1997) Chemical composition of plants: Causes and consequences of variation in allocation of C to different plant compounds. In: Resource allocation in plants, physiological ecology series, F. Bazzaz & J. Grace (eds). Academic Press, San Diego, pp. 39–72.CrossRefGoogle Scholar
  289. Poorter, H., Van der Werf, A., Atkin, O.K., & Lambers, H. (1991) Respiratory energy requirements of roots vary with the potential growth rate of a plant species. Physiol. Plant. 83:469–475.CrossRefGoogle Scholar
  290. Poorter, H., Gifford, R.M., Kriedemann, P.E., & Wong, S.C. (1992) A quantitative analysis of dark respiration and carbon content as factors in the growth response of plants to elevated CO2. Aust. J. Bot. 40:501–513.Google Scholar
  291. Poorter, H., Van de Vijver, C.A.D.M., Boot, R.G.A., & Lambers, H. (1995) Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply. Plant Soil 171:217–227.CrossRefGoogle Scholar
  292. Purvis, A.C. & Shewfelt, R.L. (1993) Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol. Plant. 88:712–718.CrossRefGoogle Scholar
  293. Raskin, I., Ehmann, A., Melander, W.R., & Meeuse, B.J.D. (1987) Salicylic acid: A natural inducer of heat production in Arum lilies. Science 237:1601–1602.PubMedCrossRefGoogle Scholar
  294. Raskin, I., Turner, I.M., & Melander, W.R. (1989) Regulation of heat production in the inflorescence of an Arum lily by endogenous salicylic acid. Proc. Natl. Acad. Sci. 86:2214–2218.PubMedCrossRefGoogle Scholar
  295. Rennenberg, H. & Filner, P. (1983) evelopmental changes in the potential for H2S emission in cucurbit plants. Plant Physiol. 71:269–275PubMedCrossRefGoogle Scholar
  296. Ribas-Carbo, M., Berry, J.A., Yakir, D., Giles, L., Robinson, S.A., Lennon, A.M., & Siedow, J.N. (1995) Electron partitioning between the cytochrome and alternative pathways in plant mitochondria. Plant Physiol. 109: 829–837.PubMedGoogle Scholar
  297. Qi, J., Marshall, J.D., & Mattson, K.G. (1994) High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol. 128:435–442.CrossRefGoogle Scholar
  298. Richter, D.D. & Markewitz, D. (1995) How deep is soil? BioScience 45:600–609.CrossRefGoogle Scholar
  299. Rivoal, J. & Hanson, A.D. (1993) Evidence for a large and sustained glycolytic flux to lactate in anoxic roots of some members of the halophytic genus Limonium. Plant Physiol. 101:553–560.PubMedGoogle Scholar
  300. Rivoal, J. & Hanson, A.D. (1994) Metabolic control of anaerobic glycolysis. Overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion. Plant Physiol. 106:1179–1185.PubMedGoogle Scholar
  301. Roberts, J.K.M. (1984) Study of plant metabolism in vivo using NMR spectroscopy. Annu. Rev. Plant Physiol. 35:375–386.CrossRefGoogle Scholar
  302. Roberts, J.K.M. (1985) Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol. 77:492–494.PubMedCrossRefGoogle Scholar
  303. Roberts, J.K.M., Wemmer, D., & Jardetzky, O. (1984a) Measurements of mitochondrial ATP-ase activity in maize root tips by saturation transfer 31P nuclear magnetic resonance. Plant Physiol. 74:632–639.PubMedCrossRefGoogle Scholar
  304. Roberts, J.K.M., Callis, J., Jardetzky, O., Walbot, V., & Freeling, M. (1984b) Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. USA 81:6029–6033.PubMedCrossRefGoogle Scholar
  305. Robinson, S.A., Yakir, D., Ribas-Carbo, M., Giles, L., Osmond, C.B., Siedow, J.N., & Berry, J.A. (1992) Measurements of the engagement of cyanide-resistant respiration in the crassulacean acid metabolism plant Kalanchoe daigremontiana with the use of on-line oxygen isotope discrimination. Plant Physiol. 100:1087–1091.PubMedCrossRefGoogle Scholar
  306. Robinson, S.A., Ribas-Carbo, M., Yakir, D., Giles, L., Reuveni, Y., & Berry, J.A. (1995) Beyond SHAM and cyanide: Opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination. Aust. J. Plant Physiol. 22:487–496.CrossRefGoogle Scholar
  307. Ryan, M.G. (1995) Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content. Plant Cell Environ 18:765–772.CrossRefGoogle Scholar
  308. Ryan, M.G. & Waring, R.H. (1992) Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73:2100–2108.CrossRefGoogle Scholar
  309. Ryan, M.G., Linder, S., Vose, J.M., & Hubbard, R.M. (1994) Dark respiration of pines. Ecol. Bull. 43:50–63.Google Scholar
  310. Ryan, M.G., Binkley, D., & Fownes, J.H. (1997) Agerelated decline in forest productivity: Pattern and process. Adv. Ecol. Res. 27:213–262.CrossRefGoogle Scholar
  311. Schaaf, J., Walter, M.H., & Hess, D. (1995) Primary metabolism in plant defense. Regulation of bean malic enzyme gene promoter in transgenic tobacco by development and environmental cues. Plant Physiol. 108:949–960.PubMedGoogle Scholar
  312. Schubert, S., Schubert, E., & Mengel, K. (1990) Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124:239–244.CrossRefGoogle Scholar
  313. Semikhatova, O.A., Gerasimenko, T.V., & Ivanova, T.I. (1992) Photosynthesis, respiration, and growth of plants in the Soviet Arctic. In: Arctic Ecosystems in a Changing Climate, F.S. Chapin, R.L. Jefferies, J.F. Reynolds, G.R. Shaver, & J. Svoboda (eds). Academic Press, San Diego, pp. 169–192.Google Scholar
  314. Seymour, R.S. & Schultze-Motel, P. (1996) Thermoregulating lotus flowers. Nature 383:305.CrossRefGoogle Scholar
  315. Shaw, M. & Samborski, D.J. (1957) The physiology of hostparasite relations. III The pattern of respiration in rusted and mildewed cereal leaves. Can. J. Bot. 35:389–407.CrossRefGoogle Scholar
  316. Shipway, M.R. & Bramlage, W.J. (1973) Effects of carbon dioxide on activity of apple mitochondria. Plant Physiol. 51:1095–1098.PubMedCrossRefGoogle Scholar
  317. Simons, B.H. & Lambers, H. (1998) The alternative oxidase: is it a respiratory pathway allowing a plant to cope with stress? In: Plant responses to environmental stresses: From phytohormones to genome reorganization. H.R. Lerner (ed). Plenum Press, New York, in pressGoogle Scholar
  318. Simons, B.H., Mulder, L., Van Loon, L.C., & Lambers, H. (1998) Enhanced expression and activation of the alternative oxidase in the interaction of Arabidopsis with pathogenic Pseudomonas syringae strains. Plant Physiol., submittedGoogle Scholar
  319. Sims, D.A. & Pearcy, R.W. (1991) Photosynthesis and respiration in Alocasia macrorrhiza following transfers to high and low light. Oecologia 86:447–453.CrossRefGoogle Scholar
  320. Smakman, H. & Hofstra, R. (1982) Energy metabolism of Plantago lanceolata as affected by change in root temperature. Physiol. Plant. 56:33–37.CrossRefGoogle Scholar
  321. Stiles, W. & Leach, W. (1936) Respiration in plants. Methuen & Co., London.Google Scholar
  322. Tan, K. & Keltjens, W.G. (1990a) Interaction between aluminium and phosphorus in sorghum plants. I. Studies with the aluminium sensitive genotype TAM428. Plant Soil 124:25–23.CrossRefGoogle Scholar
  323. Tan, K. & Keltjens, W.G. (1990b) Interaction between alu-minium and phosphorus in sorghum plants. II. Studies with the aluminium tolerant genotype SCO 283. Plant Soil 124:25–32.CrossRefGoogle Scholar
  324. Torn, M.S. & Chapin III, F.S. (1993) Environmental and biotic controls over methane flux from arctic tundra. Chemosphere 26:357–368.CrossRefGoogle Scholar
  325. Skubatz, H., Nelson, T.A., Meeuse, B.J.D., & Bendich, A.J. (1991) Heat production in the voodoo lily (Sauromatum guttatum) as monitored by infrared thermography. Plant Physiol. 95:1084–1088.PubMedCrossRefGoogle Scholar
  326. Vertregt, N. & Penning de Vries, F.W.T. (1987) A rapid method for determining the efficiency of biosynthesis of nlant biomass. J. Theor. Biol. 128:109–119.CrossRefGoogle Scholar
  327. Umbach, A.L. & Siedow, J.N. (1993) Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol. 103:845–854.PubMedGoogle Scholar
  328. Umbach, A.L., Wiskich, J.T., & Siedow, J.N. (1994) Regulation of alternative oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in soybean seedling mitochondria. FEBS Lett. 348:181–184.PubMedCrossRefGoogle Scholar
  329. Van der Werf, A. (1995) Growth analysis and photoassimilate partitioning. In: Photoassimilate distribution in plants and crops: Source-sink relationships, E. Zamski & A.A. Schaffer (eds). Marcel Dekker, New York, pp. 1–20.Google Scholar
  330. Van der Werf, A. (1996) Growth, carbon allocation, and respiration as affected by nitrogen supply: Aspects of the carbon balance. In: Dynamics of roots and nitrogen in intercropping systems of the semiarid tropics, O. Ito, C. Johansen, J.J. Adu-Gyamfi, K. Katayama, J.V.D.K. Kumar Rao, & T.J. Rego (eds). Japan International Research Center for Agricultural Sciences, Ibaraki.Google Scholar
  331. Van der Werf, A., Kooijman, A., Welschen, R., & Lambers, H. (1988) Respiratory costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. Physiol. Plant. 72:483–491.CrossRefGoogle Scholar
  332. Van der Werf, A., Welschen, R., & Lambers, H. (1992a) Respiratory losses increase with decreasing inherent growth rate of a species and with decreasing nitrate supply: A search for explanations for these observations. In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 421–432.Google Scholar
  333. Van der Werf, A., Van den Berg, G., Ravenstein, H.J.L., Lambers, H., & Eising, R. (1992b) Protein turnover: A significant component of maintenance respiration in roots? In: Molecular, biochemical and physiological aspects of plant respiration, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 483–492.Google Scholar
  334. Van der Werf, A., Poorter, H., & Lambers, H. (1994) Respiration as dependent on a species’ inherent growth rate and on the nitrogen supply to the plant. In: A wholeplant perspective of carbon-nitrogen interactions, J. Roy & E. Garnier (eds). SPB Academic Publishing, The Hague, pp. 61–77.Google Scholar
  335. Vani, T. & Raghavendra, S. (1994) High mitochondrial activity but incomplete engagement of the cyanideresistant alternative pathway in guard cell protoplasts of pea . Plant Physiol. 105:1263–1268.PubMedGoogle Scholar
  336. Vanlerberghe, G.C. & McIntosh, L. (1992) Lower growth temperatures increase alternative oxidase protein in tobacco callus. Plant Physiol. 100:115–119.PubMedCrossRefGoogle Scholar
  337. Vanlerberghe, G.C. & McIntosh, L. (1996) Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol. 111:589–595.PubMedGoogle Scholar
  338. Vanlerberghe, G.C., Day, D.A., Wiskich, J.T., Vanlerberghe, A.E., & McIntosh, L. (1995) Alternative oxidase activity in tobacco leaf mitochondria. Plant Physiol. 109: 353–361.PubMedGoogle Scholar
  339. Veen, B.W. (1980) Energy costs of ion transport. In: Genetic engeneering of osmoregulation. Impact on plant productivity for food, chemicals and energy, D.W. Rains, R.C. Valentine, & C. Holaender (eds), Plenum Press, New York, pp. 187–195.CrossRefGoogle Scholar
  340. Wagner, A.M. & Krab, K. (1995) The alternative respiration pathway in plants: Role and regulation. Physiol. Plant. 95:318–325.CrossRefGoogle Scholar
  341. Wagner, A.M., Van Emmerik, W.A.M., Zwiers, J.H., & Kaagman, H.M.C.M. (1992) Energy metabolism of Petunia hybrida cell suspensions growing in the presence of antimycin A. In: Plant respiration. Molecular, biochemical and physiological aspects, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 609–614.Google Scholar
  342. Waring R.H. & Schlesinger, W.H. (1985) Forest ecosystems: Concepts and management. Academic Press, Orlando.Google Scholar
  343. Weger, H.G. & Guy, R.D. (1991) Cytochrome and alternative pathway respirtion in white spruce (Picea glauca) roots. Effects of growth and measurement temperature. Physiol. Plant 83:675–681.CrossRefGoogle Scholar
  344. Wegner, L. & Raschke, K. (1994) Ion channels in the xylem parenchyma of barley roots. A procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels. Plant Physiol. 105:799–813.PubMedGoogle Scholar
  345. Williams, J.H.H. & Farrar, J.F. (1990) Control of barley root respirtion. Physiol. Plant. 79:259–266.CrossRefGoogle Scholar
  346. Williams, J.H.H., Winters, A.L., & Farrar, J.F. (1992) Sucrose: a novel plant growth regulator. In: Plant respiration. Molecular, biochemical and physiological aspects, H. Lambers & L.H.W. Van der Plas (eds). SPB Academic Publishing, The Hague, pp. 463–469Google Scholar
  347. Yan, F., Schubert, S., & Mengel, K. (1992) Effect of low root medium pH on net proton release, root respiration, and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.). Plant Physiol. 99:415–421.PubMedCrossRefGoogle Scholar
  348. Williams, K., Percival, F., Merino, J., & Mooney, H.A. (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ. 10:725–734.Google Scholar
  349. Williams, K., Field, C.B., & Mooney, H.A. (1989) Relationship among leaf construction costs, leaf longevity and light environment in rainforest plants of the genes Piper. Am. Nat. 133:198–211.CrossRefGoogle Scholar
  350. Wullschleger, S.D., Ziska, L.H., & Bunce, J.A. (1994) Respiratory responses of higher plants to atmospheric CO2 enrichment. Physiol. Plant. 90:221–229.CrossRefGoogle Scholar
  351. Zacheo, G. & Molinari, S. (1987) Relationship between root respiration and seedling age in tomato cultivars infested by Meloidogyne incognita. Ann. Appl. Biol. 111:589–595.CrossRefGoogle Scholar
  352. Blechschmidt-Schneider, S., Eschrich, W., & Jahnke, S. (1997) Phloem loading, translocation and unloadin processes. In: Trees—contributions to modern tre physiology, H. Rennenberg, W. Eschrich, & H. Ziegle (eds). Backhuys, Leiden, pp. 139–163.Google Scholar
  353. Böckenhoff, A., Prior, D.A.M., Gruddler, F.M.W., & Oparka, K.J. (1996) Induction of phloem unloading in Arabidopsis thaliana roots by the parasitic nematode Heterodera schachtii. Plant Physiol. 112:1421–1427.PubMedCrossRefGoogle Scholar
  354. Botha, C.E.J. & Cross, R.H.M. (1997) Plasmodesmatal trequency in relation to short-distance transport and phloem loading in leaves of barley (Hordeum vulgare). Phloem is not loaded directly from the symplast. Phvsiol. Plant. 99:355–362.CrossRefGoogle Scholar
  355. Botha, C.E.J. & Van Bel, A.J.E. (1992) Quantification of symplastic continuity as visualised by plasmodesmograms: Diagnostic value for phloem-loading pathways. Planta 187:359–366.Google Scholar
  356. Dick, P.S. & Rees, T. (1975) The pathway of sugar transport in roots of Pisum sativum. J Exp Bot 26:305–314.CrossRefGoogle Scholar
  357. Dorhout, R., Gommers, F.J., & Kollöffel, C. (1993) Phloem transport of carboxyfluorescein through tomato roots infected with Meloidogyne incognita. Physiol. Mol. Plant Pathol. 43:1–10.CrossRefGoogle Scholar
  358. Ewers, F.W. & Fisher, J.B. (1991) Why vines have narrow stems: Histological trends in Bauhinia fassoglensis (Fabaceae). Oecologia 88:233–237.CrossRefGoogle Scholar
  359. Gamalei, Y.V. (1989) Structure and function of leaf minor veins in trees and herbs. A taxonomic review. Trees 3:96–110.CrossRefGoogle Scholar
  360. Gamalei, Y.V. (1991) Phloem loading and its development related to plant evolution from trees to herbs. Trees 5:50–64.CrossRefGoogle Scholar
  361. Giaquinta, R.T., Lin, W., Sadler, N.L., & Franceschi, V.R. (1983) Pathway of phloem unloading of sucrose in corn rnnts. Plant Physiol. 72:362–367.PubMedCrossRefGoogle Scholar
  362. Gunning, B.E.S. & Steer, M.W. (1996) Plant cell biology, structure and function. Jones and Bartlett Publishers, London.Google Scholar
  363. Keller, F. (1991) Carbohydrate transport in discs of storage parenchyma of celery petioles. 2. Uptake of mannitol. New Phytol. 117:423–429.CrossRefGoogle Scholar
  364. Körner, C., Pelaez-Riedl, S., & Van Bel, A.J.E. (1995) CO2 responsiveness of plants: A possible link to phloem d loading. Plant Cell Environ. 18:595–600.CrossRefGoogle Scholar
  365. Lambers, H. & Atkin, O.K. (1995) Regulation of carbon metabolism in roots. In: Carbon partitioning and e source-sink interactions in plants, M.A. Madore & W.J. Lucas (eds). American Society of Plant Physiologists, Rockville, pp. 226–238.Google Scholar
  366. Oparka, K.J., Duckett, C.M., Prior, D.A.M., & Fisher, D.B. y (1994) Real time imaging of phloem unloading in the s root tip of Arabidopsis. Plant J. 6:759–766.CrossRefGoogle Scholar
  367. Pritchard, J. (1996) Aphid stylectomy reveals an osmotic step between sieve tube and cortical cells in barley roots. J. Exp. Bot. 47:1519–1524.CrossRefGoogle Scholar
  368. Sasek, T.W., DeLucia, E.H., & Strain, B.R. (1985) Reversibility of photosynthetic inhibition in cotton after longterm exposure to elevated CO2 concentrations. Plant. Physiol. 78:619–622.PubMedCrossRefGoogle Scholar
  369. Thomas, R.B. & Strain, B.R. (1985) Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol. 96:627–634.CrossRefGoogle Scholar
  370. Thorne, J.H. (1985) Phloem unloading of C and N assimilates in developing seeds. Annu. Rev. Plant Physiol. 36:317–343.CrossRefGoogle Scholar
  371. Turgeon, R. (1991) Symplasmic phloem loading and the sink-source transition in leaves: a model. In: Recent advances in phloem transport and assimilate compartmentation. Bonnemain, J.L., Delrot, S., Lucas, W.J., & Dainty, J. eds. Ouest Edition, Nantes pp. 18–22.Google Scholar
  372. Turgeon, R. (1995) The selection of raffinose family oligosaccharides as translocates in higher plants. In: Carbon Partitioning and Source-Sink Interactions in Plants, M.A. Madore & W.J. Lucas (eds). American Society of Plant Physiologists, Rockville, pp. 195–203.Google Scholar
  373. Turgeon, R. (1996) Phloem loading and plasmodesmata. Trends Plant Sci. 1:418–423.CrossRefGoogle Scholar
  374. Van Bel, A.J.E. (1992) Different phloem loading machineries correlated with the climate. Acta Bot. Neerl. 41:121–141.Google Scholar
  375. Van Bel, A.J.E. (1993) Strategies of phloem loading. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:253–281.CrossRefGoogle Scholar
  376. Van Bel, A.J.E. (1996) Carbohydrate processing in the mesophyll trajectory in symplasmic and apoplasmic phloem loading. Prog. Botany 57:140–167.Google Scholar
  377. Van Bel, A.J.E. & Gamalei, Y.V. (1992) Ecophysiology of phloem loading in source leaves. Plant Cell Environ. 15:265–270.CrossRefGoogle Scholar
  378. Wolswinkel, P. & Ammerlaan, A. (1986) Turgor-sensitive transport in developing seeds of legumes: The role of the stage of development and the use of excised vs. attached seed coats. Plant Cell Environ 9:133–140.CrossRefGoogle Scholar
  379. Wolswinkel, P., Ammerlaan, A., & Peters, H.F.C. (1984) Phloem unloading of amino acids at the site of Cuscuta europaea. Plant Physiol. 75:13–20.PubMedCrossRefGoogle Scholar
  380. Zimmermann, M.H. & Ziegler, H. (1975) List of sugars and sugar alcohols in sieve-tube exudates. In: Encyclopedia of Plant Physiology, Vol. 1, M.H. Zimmermann & J.A. Milburn (eds). Springer-Verlag, Berlin, pp. 480–503.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hans Lambers
    • 1
    • 2
  • F. Stuart ChapinIII
    • 3
  • Thijs L. Pons
    • 1
  1. 1.Department of Plant Ecology and Evolutionary BiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Plant Sciences, Faculty of AgricultureUniversity of Western AustraliaNedlandsAustralia
  3. 3.Institute of Arctic BiologyUniversity of AlaskaFairbanksUSA

Personalised recommendations