Advertisement

LGO — A Program System for Continuous and Lipschitz Global Optimization

  • János D. Pintér
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 18)

Abstract

The program system LGO serves to solve global optimization problems under very mild-continuity or Lipschitz-continuity-structural assumptions. LGO is embedded into a menu-driven user interface which effectively assists the application development process. Implementation details, and several application areas are also highlighted.

Keywords

Continuous and Lipschitz global optimization LGO integrated global/local solver system interactive DSS development applications 

AMS Subject Classification

65K30 90005 90C31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachem, A., Grötschel, M. and Korte, B., eds. (1983) Mathematical Programming: The State of the Art. Springer, Berlin Heidelberg New York.zbMATHGoogle Scholar
  2. Benson, H. P. (1995) Concave minimization: Theory, applications and algorithms. In: Horst and Pardalos, eds. (1995); pp. 43–148.Google Scholar
  3. Birge, J.R. and Murty, K.G., eds. (1994) Mathematical Programming: State of the Art. University of Michigan Press, Ann Arbor.Google Scholar
  4. Boon, J.G., Pintér, J. and Somlyódy, L. (1989) A new stochastic approach for controlling river pollution. In: International Association for Hydrologic Sciences (IAHS) Publications 180, 241–249. IAHS, London.Google Scholar
  5. Brent, R.P. (1973) Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood Cliffs.zbMATHGoogle Scholar
  6. Brooke, A., Kendrick, D. and Meeraus, A. (1988) GAMS — A User’s Guide. The Scientific Press, Palo Alto.Google Scholar
  7. Cooke, R.M. and Pintér, J. (1990) Optimization in risk management. Civil Engineering Systems 6 (1989) 122–128.CrossRefGoogle Scholar
  8. Finley, J.R., Pintér, J. and Satish, M.G. (1994) Aquifer model calibration applying global optimization. Research Report 94–05, Department of Industrial Engineeering, Technical University of Nova Scotia, Halifax.Google Scholar
  9. Fletcher, R. (1983) Penalty functions. In: Bachem, Grötschel and Korte, eds. (1983), pp. 87–114.Google Scholar
  10. Fourer, R., Gay, D.M. and Kernighan, B.W. (1993) AMPL — A Modelling Language for Mathematical Programming. The Scientific Press, San Francisco.Google Scholar
  11. Gensym Corporation (1995) GENSYM— Intelligent Real-Time Systems. Cambridge.Google Scholar
  12. Hansen, P. and Jaumard, B. (1995) Lipschitz optimization. In: Horst and Pardalos, eds. (1995); pp. 407–493.Google Scholar
  13. Heckert, A. and Filliben, J.J. (1995) DATAPLOT Reference Manual. US National Institute of Standards and Technology, Gaithersburg.Google Scholar
  14. Hendrix, E.M.T. and Pintér, J. (1991) An application of Lipschitzian global optimization to product design. Journal of Global Optimization 1, 389–401.zbMATHCrossRefGoogle Scholar
  15. Hillier, F.S. and Lieberman, G.J. (1986) Introduction to Operations Research. (4th Ed.) Holden Day, Oakland.zbMATHGoogle Scholar
  16. Horst, R. and Pardalos, P.M. eds. (1995) Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht Boston London.zbMATHGoogle Scholar
  17. Lahey Computer Systems, Inc. (1990)) Lahey Fortran — Programmer’s Reference Manual. Incline Village.Google Scholar
  18. Lahey Computer Systems, Inc. (1994a) LF 90 — User’s Guide. Incline Village.Google Scholar
  19. Lahey Computer Systems, Inc. (1994b) LF 90 — Language Reference. Incline Village.Google Scholar
  20. MathSoft, Inc. (1993) Mathcad User’s Guide. Cambridge.Google Scholar
  21. MathWorks, Inc. (The) (1995a) MATLAB — High Performance Numeric Computation and Visualization Software. User’s Guide. Natick.Google Scholar
  22. MathWorks, Inc. (The) (1995b) MATLAB — High Performance Numeric Computation and Visualization Software. Reference Guide. Natick.Google Scholar
  23. Moré, J.J. and Wright, S.J. (1993) Optimization Software Guide. SIAM, Philadelphia.zbMATHCrossRefGoogle Scholar
  24. Paragon Decision Technology B.V. (1995) AIMMS. Haarlem.Google Scholar
  25. Pintér, J. (1990a) Solving nonlinear equations via global partition and search: Some experimental results. Computing 43, 309–323.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Pintér, J. (1990b) Globally optimized calibration of environmental models. Annals of Operations Research 25, 211–222.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Pintér, J., Benedek, P. and Darázs, A. (1990) Risk management of accidental water pollution: An illustrative application. Water Science and Technology 22, 265–274.Google Scholar
  28. Pintér, J. (1991) Stochastic modelling and optimization for environmental management. Annals of Operations Research 31, 527–544.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Pintér, J. and Pesti, G. (1991) Set partition by globally optimized cluster seed points. European Journal of Operational Research 51, 127–135.zbMATHCrossRefGoogle Scholar
  30. Pintér, J. (1992a) Convergence qualification of partition algorithms in global optimization. Mathematical Programming 56, 343–360.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Pintér, J. (1992b) Lipschitzian global optimization: Some prospective applications. In: Floudas, C.A. and Pardalos, P.M., eds. (1992) Recent Advances in Global Optimization; pp. 399 – 432. Princeton University Press.Google Scholar
  32. Pintér, J. and Cooke, R.M. (1994) Combining negotiated expert opinions: A global optimization approach. Working Paper, Department of Industrial Engineering, Technical University of Nova Scotia, Halifax.Google Scholar
  33. Pintér, J.D. (1995a) Global Optimization in Action (Continuous and Lipschitz Global Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht Boston London.Google Scholar
  34. Pintér, J.D. (1995b) LGO: An implementation of a Lipschitzian global optimization procedure. Research Report NM-R9522, National Research Institute for Mathematics and Computer Science, Amsterdam.Google Scholar
  35. Pintér, J.D., Fels, M., Lycon, D.S., Meeuwig, D.J. and Meeuwig, J.W. (1995) An intelligent decision support system for assisting industrial wastewater management. Annals of Operations Research 58, 455–477.zbMATHCrossRefGoogle Scholar
  36. Pintér, J.D. (1996) LGO — A Program System for Continuous and Lipschitz Global Optimization. User’s Guide. Halifax.Google Scholar
  37. Powell, M.J.D. (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal 7, 155–162.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Press, W.H., Teukolsky, S.A., Wetterling, W.T. and Flannery, B. (1992) Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge University Press.Google Scholar
  39. Ribar, L.J. (1993) Fortran Programming for Windows. Osborne McGraw-Hill, Berkeley.Google Scholar
  40. Schittkowski, K. (1996) Parameter Estimation in Dynamical Systems with EASY-FIT. User’s Guide. Mathematical Institute, University of Bayreuth.Google Scholar
  41. Stortelder, W.J.H. and Pintér, J.D. (1996) Numerical approximation of elliptic Fekete point sets: A global optimization approach. (In preparation.)Google Scholar
  42. Trihedral Engineering, Ltd. (1996) WEB User’s Manual. Bedford.Google Scholar
  43. Van der Molen, D.T. and Pintér, J. (1993) Environmental model calibration under different problem specifications: An application tothe model SED. Ecological Modelling 68, 1–19.CrossRefGoogle Scholar
  44. Vavasis, S.A. (1995) Complexity issues in global optimization: A survey. In: Horst and Pardalos, eds. (1995); pp. 27–41.Google Scholar
  45. Winston, W.L. (1992) Operations Research: Applications and Algorithms. (3rd Ed.) Wadsworth Publishing Company, Belmont.Google Scholar
  46. Wolfram, S. (1992) Mathematica — A System for Doing Mathematics by Computer. (2nd Ed.) Addison-Wesley, Redwood City.Google Scholar
  47. Wolfram Research, Inc. (1993) Mathematica — User’s Guide. Champaign.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • János D. Pintér
    • 1
  1. 1.Pintér Consulting Services & Dalhousie UniversityHalifaxCanada

Personalised recommendations